QGIS API Documentation 3.99.0-Master (21b3aa880ba)
Loading...
Searching...
No Matches
qgs3dutils.cpp
Go to the documentation of this file.
1/***************************************************************************
2 qgs3dutils.cpp
3 --------------------------------------
4 Date : July 2017
5 Copyright : (C) 2017 by Martin Dobias
6 Email : wonder dot sk at gmail dot com
7 ***************************************************************************
8 * *
9 * This program is free software; you can redistribute it and/or modify *
10 * it under the terms of the GNU General Public License as published by *
11 * the Free Software Foundation; either version 2 of the License, or *
12 * (at your option) any later version. *
13 * *
14 ***************************************************************************/
15
16#include "qgs3dutils.h"
17
18#include "qgs3dmapcanvas.h"
19#include "qgs3dmapscene.h"
20#include "qgsabstract3dengine.h"
21#include "qgsabstractgeometry.h"
23#include "qgsapplication.h"
24#include "qgscameracontroller.h"
25#include "qgschunkedentity.h"
26#include "qgsfeature.h"
27#include "qgsfeatureiterator.h"
28#include "qgsfeaturerequest.h"
29#include "qgsfeedback.h"
31#include "qgslinestring.h"
39#include "qgspolygon.h"
40#include "qgsraycastcontext.h"
41#include "qgsraycastresult.h"
42#include "qgsterrainentity.h"
43#include "qgsterraingenerator.h"
44#include "qgsvectorlayer.h"
45
46#include <QOpenGLContext>
47#include <QOpenGLFunctions>
48#include <Qt3DExtras/QPhongMaterial>
49#include <Qt3DLogic/QFrameAction>
50#include <Qt3DRender/QRenderSettings>
51#include <QtMath>
52
53#if !defined( Q_OS_MAC )
54#include <GL/gl.h>
55#endif
56
57#if QT_VERSION < QT_VERSION_CHECK( 6, 0, 0 )
58#include <Qt3DRender/QBuffer>
59typedef Qt3DRender::QBuffer Qt3DQBuffer;
60#else
61#include <Qt3DCore/QBuffer>
62typedef Qt3DCore::QBuffer Qt3DQBuffer;
63#endif
64
65// declared here as Qgs3DTypes has no cpp file
66const char *Qgs3DTypes::PROP_NAME_3D_RENDERER_FLAG = "PROP_NAME_3D_RENDERER_FLAG";
67
69{
70 // Set policy to always render frame, so we don't wait forever.
71 Qt3DRender::QRenderSettings::RenderPolicy oldPolicy = engine.renderSettings()->renderPolicy();
72 engine.renderSettings()->setRenderPolicy( Qt3DRender::QRenderSettings::RenderPolicy::Always );
73
74 // Wait for at least one frame to render
75 Qt3DLogic::QFrameAction *frameAction = new Qt3DLogic::QFrameAction();
76 scene->addComponent( frameAction );
77 QEventLoop evLoop;
78 QObject::connect( frameAction, &Qt3DLogic::QFrameAction::triggered, &evLoop, &QEventLoop::quit );
79 evLoop.exec();
80 scene->removeComponent( frameAction );
81 frameAction->deleteLater();
82
83 engine.renderSettings()->setRenderPolicy( oldPolicy );
84}
85
87{
88 while ( scene->totalPendingJobsCount() > 0 )
89 {
90 QgsApplication::processEvents();
91 }
92}
93
95{
96 QImage resImage;
97 QEventLoop evLoop;
98
99 // We need to change render policy to RenderPolicy::Always, since otherwise render capture node won't work
100 engine.renderSettings()->setRenderPolicy( Qt3DRender::QRenderSettings::RenderPolicy::Always );
101
102 waitForFrame( engine, scene );
103
104 auto saveImageFcn = [&evLoop, &resImage]( const QImage &img ) {
105 resImage = img;
106 evLoop.quit();
107 };
108
109 const QMetaObject::Connection conn1 = QObject::connect( &engine, &QgsAbstract3DEngine::imageCaptured, saveImageFcn );
110 QMetaObject::Connection conn2;
111
112 auto requestImageFcn = [&engine, scene] {
113 if ( scene->sceneState() == Qgs3DMapScene::Ready )
114 {
115 engine.renderSettings()->setRenderPolicy( Qt3DRender::QRenderSettings::RenderPolicy::OnDemand );
116 engine.requestCaptureImage();
117 }
118 };
119
120 if ( scene->sceneState() == Qgs3DMapScene::Ready )
121 {
122 requestImageFcn();
123 }
124 else
125 {
126 // first wait until scene is loaded
127 conn2 = QObject::connect( scene, &Qgs3DMapScene::sceneStateChanged, requestImageFcn );
128 }
129
130 evLoop.exec();
131
132 QObject::disconnect( conn1 );
133 if ( conn2 )
134 QObject::disconnect( conn2 );
135
136 engine.renderSettings()->setRenderPolicy( Qt3DRender::QRenderSettings::RenderPolicy::OnDemand );
137 return resImage;
138}
139
141{
142 QImage resImage;
143 QEventLoop evLoop;
144
145 // We need to change render policy to RenderPolicy::Always, since otherwise render capture node won't work
146 engine.renderSettings()->setRenderPolicy( Qt3DRender::QRenderSettings::RenderPolicy::Always );
147
148 auto requestImageFcn = [&engine, scene] {
149 if ( scene->sceneState() == Qgs3DMapScene::Ready )
150 {
151 engine.renderSettings()->setRenderPolicy( Qt3DRender::QRenderSettings::RenderPolicy::OnDemand );
153 }
154 };
155
156 auto saveImageFcn = [&evLoop, &resImage]( const QImage &img ) {
157 resImage = img;
158 evLoop.quit();
159 };
160
161 QMetaObject::Connection conn1 = QObject::connect( &engine, &QgsAbstract3DEngine::depthBufferCaptured, saveImageFcn );
162 QMetaObject::Connection conn2;
163
164 // Make sure once-per-frame functions run
165 waitForFrame( engine, scene );
166 if ( scene->sceneState() == Qgs3DMapScene::Ready )
167 {
168 requestImageFcn();
169 }
170 else
171 {
172 // first wait until scene is loaded
173 conn2 = QObject::connect( scene, &Qgs3DMapScene::sceneStateChanged, requestImageFcn );
174 }
175
176 evLoop.exec();
177
178 QObject::disconnect( conn1 );
179 if ( conn2 )
180 QObject::disconnect( conn2 );
181
182 engine.renderSettings()->setRenderPolicy( Qt3DRender::QRenderSettings::RenderPolicy::OnDemand );
183 return resImage;
184}
185
186
187double Qgs3DUtils::calculateEntityGpuMemorySize( Qt3DCore::QEntity *entity )
188{
189 long long usedGpuMemory = 0;
190 for ( Qt3DQBuffer *buffer : entity->findChildren<Qt3DQBuffer *>() )
191 {
192 usedGpuMemory += buffer->data().size();
193 }
194 for ( Qt3DRender::QTexture2D *tex : entity->findChildren<Qt3DRender::QTexture2D *>() )
195 {
196 // TODO : lift the assumption that the texture is RGBA
197 usedGpuMemory += static_cast< long long >( tex->width() ) * static_cast< long long >( tex->height() ) * 4;
198 }
199 return usedGpuMemory / 1024.0 / 1024.0;
200}
201
202
203bool Qgs3DUtils::exportAnimation( const Qgs3DAnimationSettings &animationSettings, Qgs3DMapSettings &mapSettings, int framesPerSecond, const QString &outputDirectory, const QString &fileNameTemplate, const QSize &outputSize, QString &error, QgsFeedback *feedback )
204{
205 if ( animationSettings.keyFrames().size() < 2 )
206 {
207 error = QObject::tr( "Unable to export 3D animation. Add at least 2 keyframes" );
208 return false;
209 }
210
211 const float duration = animationSettings.duration(); //in seconds
212 if ( duration <= 0 )
213 {
214 error = QObject::tr( "Unable to export 3D animation (invalid duration)." );
215 return false;
216 }
217
218 float time = 0;
219 int frameNo = 0;
220 const int totalFrames = static_cast<int>( duration * framesPerSecond );
221
222 if ( fileNameTemplate.isEmpty() )
223 {
224 error = QObject::tr( "Filename template is empty" );
225 return false;
226 }
227
228 const int numberOfDigits = fileNameTemplate.count( QLatin1Char( '#' ) );
229 if ( numberOfDigits < 0 )
230 {
231 error = QObject::tr( "Wrong filename template format (must contain #)" );
232 return false;
233 }
234 const QString token( numberOfDigits, QLatin1Char( '#' ) );
235 if ( !fileNameTemplate.contains( token ) )
236 {
237 error = QObject::tr( "Filename template must contain all # placeholders in one continuous group." );
238 return false;
239 }
240
241 if ( !QDir().exists( outputDirectory ) )
242 {
243 if ( !QDir().mkpath( outputDirectory ) )
244 {
245 error = QObject::tr( "Output directory could not be created." );
246 return false;
247 }
248 }
249
251 engine.setSize( outputSize );
252 Qgs3DMapScene *scene = new Qgs3DMapScene( mapSettings, &engine );
253 engine.setRootEntity( scene );
254 // We need to change render policy to RenderPolicy::Always, since otherwise render capture node won't work
255 engine.renderSettings()->setRenderPolicy( Qt3DRender::QRenderSettings::RenderPolicy::Always );
256
257 while ( time <= duration )
258 {
259 if ( feedback )
260 {
261 if ( feedback->isCanceled() )
262 {
263 error = QObject::tr( "Export canceled" );
264 return false;
265 }
266 feedback->setProgress( frameNo / static_cast<double>( totalFrames ) * 100 );
267 }
268 ++frameNo;
269
270 const Qgs3DAnimationSettings::Keyframe kf = animationSettings.interpolate( time );
271 scene->cameraController()->setLookingAtMapPoint( kf.point, kf.dist, kf.pitch, kf.yaw );
272
273 QString fileName( fileNameTemplate );
274 const QString frameNoPaddedLeft( QStringLiteral( "%1" ).arg( frameNo, numberOfDigits, 10, QChar( '0' ) ) ); // e.g. 0001
275 fileName.replace( token, frameNoPaddedLeft );
276 const QString path = QDir( outputDirectory ).filePath( fileName );
277
278 const QImage img = Qgs3DUtils::captureSceneImage( engine, scene );
279
280 img.save( path );
281
282 time += 1.0f / static_cast<float>( framesPerSecond );
283 }
284
285 return true;
286}
287
288
289int Qgs3DUtils::maxZoomLevel( double tile0width, double tileResolution, double maxError )
290{
291 if ( maxError <= 0 || tileResolution <= 0 || tile0width <= 0 )
292 return 0; // invalid input
293
294 // derived from:
295 // tile width [map units] = tile0width / 2^zoomlevel
296 // tile error [map units] = tile width / tile resolution
297 // + re-arranging to get zoom level if we know tile error we want to get
298 const double zoomLevel = -log( tileResolution * maxError / tile0width ) / log( 2 );
299 return round( zoomLevel ); // we could use ceil() here if we wanted to always get to the desired error
300}
301
303{
304 switch ( altClamp )
305 {
307 return QStringLiteral( "absolute" );
309 return QStringLiteral( "relative" );
311 return QStringLiteral( "terrain" );
312 }
314}
315
316
318{
319 if ( str == QLatin1String( "absolute" ) )
321 else if ( str == QLatin1String( "terrain" ) )
323 else // "relative" (default)
325}
326
327
329{
330 switch ( altBind )
331 {
333 return QStringLiteral( "vertex" );
335 return QStringLiteral( "centroid" );
336 }
338}
339
340
342{
343 if ( str == QLatin1String( "vertex" ) )
345 else // "centroid" (default)
347}
348
350{
351 switch ( mode )
352 {
354 return QStringLiteral( "no-culling" );
356 return QStringLiteral( "front" );
357 case Qgs3DTypes::Back:
358 return QStringLiteral( "back" );
360 return QStringLiteral( "front-and-back" );
361 }
363}
364
366{
367 if ( str == QLatin1String( "front" ) )
368 return Qgs3DTypes::Front;
369 else if ( str == QLatin1String( "back" ) )
370 return Qgs3DTypes::Back;
371 else if ( str == QLatin1String( "front-and-back" ) )
373 else
375}
376
377float Qgs3DUtils::clampAltitude( const QgsPoint &p, Qgis::AltitudeClamping altClamp, Qgis::AltitudeBinding altBind, float offset, const QgsPoint &centroid, const Qgs3DRenderContext &context )
378{
379 float terrainZ = 0;
380 switch ( altClamp )
381 {
384 {
385 const QgsPointXY pt = altBind == Qgis::AltitudeBinding::Vertex ? p : centroid;
386 terrainZ = context.terrainRenderingEnabled() && context.terrainGenerator() ? context.terrainGenerator()->heightAt( pt.x(), pt.y(), context ) : 0;
387 break;
388 }
389
391 break;
392 }
393
394 float geomZ = 0;
395 if ( p.is3D() )
396 {
397 switch ( altClamp )
398 {
401 geomZ = p.z();
402 break;
403
405 break;
406 }
407 }
408
409 const float z = ( terrainZ + geomZ ) * static_cast<float>( context.terrainSettings()->verticalScale() ) + offset;
410 return z;
411}
412
413void Qgs3DUtils::clampAltitudes( QgsLineString *lineString, Qgis::AltitudeClamping altClamp, Qgis::AltitudeBinding altBind, const QgsPoint &centroid, float offset, const Qgs3DRenderContext &context )
414{
415 for ( int i = 0; i < lineString->nCoordinates(); ++i )
416 {
417 float terrainZ = 0;
418 switch ( altClamp )
419 {
422 {
423 QgsPointXY pt;
424 switch ( altBind )
425 {
427 pt.setX( lineString->xAt( i ) );
428 pt.setY( lineString->yAt( i ) );
429 break;
430
432 pt.set( centroid.x(), centroid.y() );
433 break;
434 }
435
436 terrainZ = context.terrainRenderingEnabled() && context.terrainGenerator() ? context.terrainGenerator()->heightAt( pt.x(), pt.y(), context ) : 0;
437 break;
438 }
439
441 break;
442 }
443
444 float geomZ = 0;
445
446 switch ( altClamp )
447 {
450 geomZ = lineString->zAt( i );
451 break;
452
454 break;
455 }
456
457 const float z = ( terrainZ + geomZ ) * static_cast<float>( context.terrainSettings()->verticalScale() ) + offset;
458 lineString->setZAt( i, z );
459 }
460}
461
462
463bool Qgs3DUtils::clampAltitudes( QgsPolygon *polygon, Qgis::AltitudeClamping altClamp, Qgis::AltitudeBinding altBind, float offset, const Qgs3DRenderContext &context )
464{
465 if ( !polygon->is3D() )
466 polygon->addZValue( 0 );
467
468 QgsPoint centroid;
469 switch ( altBind )
470 {
472 break;
473
475 centroid = polygon->centroid();
476 break;
477 }
478
479 QgsCurve *curve = const_cast<QgsCurve *>( polygon->exteriorRing() );
481 if ( !lineString )
482 return false;
483
484 clampAltitudes( lineString, altClamp, altBind, centroid, offset, context );
485
486 for ( int i = 0; i < polygon->numInteriorRings(); ++i )
487 {
488 QgsCurve *curve = const_cast<QgsCurve *>( polygon->interiorRing( i ) );
490 if ( !lineString )
491 return false;
492
493 clampAltitudes( lineString, altClamp, altBind, centroid, offset, context );
494 }
495 return true;
496}
497
498
499QString Qgs3DUtils::matrix4x4toString( const QMatrix4x4 &m )
500{
501 const float *d = m.constData();
502 QStringList elems;
503 elems.reserve( 16 );
504 for ( int i = 0; i < 16; ++i )
505 elems << QString::number( d[i] );
506 return elems.join( ' ' );
507}
508
509QMatrix4x4 Qgs3DUtils::stringToMatrix4x4( const QString &str )
510{
511 QMatrix4x4 m;
512 float *d = m.data();
513 QStringList elems = str.split( ' ' );
514 for ( int i = 0; i < 16; ++i )
515 d[i] = elems[i].toFloat();
516 return m;
517}
518
519void Qgs3DUtils::extractPointPositions( const QgsFeature &f, const Qgs3DRenderContext &context, const QgsVector3D &chunkOrigin, Qgis::AltitudeClamping altClamp, QVector<QVector3D> &positions )
520{
521 const QgsAbstractGeometry *g = f.geometry().constGet();
522 for ( auto it = g->vertices_begin(); it != g->vertices_end(); ++it )
523 {
524 const QgsPoint pt = *it;
525 float geomZ = 0;
526 if ( pt.is3D() )
527 {
528 geomZ = pt.z();
529 }
530 const float terrainZ = context.terrainRenderingEnabled() && context.terrainGenerator() ? static_cast<float>( context.terrainGenerator()->heightAt( pt.x(), pt.y(), context ) * context.terrainSettings()->verticalScale() ) : 0.f;
531 float h = 0.0f;
532 switch ( altClamp )
533 {
535 h = geomZ;
536 break;
538 h = terrainZ;
539 break;
541 h = terrainZ + geomZ;
542 break;
543 }
544 positions.append( QVector3D(
545 static_cast<float>( pt.x() - chunkOrigin.x() ),
546 static_cast<float>( pt.y() - chunkOrigin.y() ),
547 h
548 ) );
549 QgsDebugMsgLevel( QStringLiteral( "%1 %2 %3" ).arg( positions.last().x() ).arg( positions.last().y() ).arg( positions.last().z() ), 2 );
550 }
551}
552
558static inline uint outcode( QVector4D v )
559{
560 // For a discussion of outcodes see pg 388 Dunn & Parberry.
561 // For why you can't just test if the point is in a bounding box
562 // consider the case where a view frustum with view-size 1.5 x 1.5
563 // is tested against a 2x2 box which encloses the near-plane, while
564 // all the points in the box are outside the frustum.
565 // TODO: optimise this with assembler - according to D&P this can
566 // be done in one line of assembler on some platforms
567 uint code = 0;
568 if ( v.x() < -v.w() )
569 code |= 0x01;
570 if ( v.x() > v.w() )
571 code |= 0x02;
572 if ( v.y() < -v.w() )
573 code |= 0x04;
574 if ( v.y() > v.w() )
575 code |= 0x08;
576 if ( v.z() < -v.w() )
577 code |= 0x10;
578 if ( v.z() > v.w() )
579 code |= 0x20;
580 return code;
581}
582
583
594bool Qgs3DUtils::isCullable( const QgsAABB &bbox, const QMatrix4x4 &viewProjectionMatrix )
595{
596 uint out = 0xff;
597
598 for ( int i = 0; i < 8; ++i )
599 {
600 const QVector4D p( ( ( i >> 0 ) & 1 ) ? bbox.xMin : bbox.xMax, ( ( i >> 1 ) & 1 ) ? bbox.yMin : bbox.yMax, ( ( i >> 2 ) & 1 ) ? bbox.zMin : bbox.zMax, 1 );
601 const QVector4D pc = viewProjectionMatrix * p;
602
603 // if the logical AND of all the outcodes is non-zero then the BB is
604 // definitely outside the view frustum.
605 out = out & outcode( pc );
606 }
607 return out;
608}
609
611{
612 return QgsVector3D( mapCoords.x() - origin.x(), mapCoords.y() - origin.y(), mapCoords.z() - origin.z() );
613}
614
616{
617 return QgsVector3D( worldCoords.x() + origin.x(), worldCoords.y() + origin.y(), worldCoords.z() + origin.z() );
618}
619
621{
622 QgsRectangle extentMapCrs( extent );
623 if ( crs1 != crs2 )
624 {
625 // reproject if necessary
626 QgsCoordinateTransform ct( crs1, crs2, context );
628 try
629 {
630 extentMapCrs = ct.transformBoundingBox( extentMapCrs );
631 }
632 catch ( const QgsCsException & )
633 {
634 // bad luck, can't reproject for some reason
635 QgsDebugError( QStringLiteral( "3D utils: transformation of extent failed: " ) + extentMapCrs.toString( -1 ) );
636 }
637 }
638 return extentMapCrs;
639}
640
641QgsAABB Qgs3DUtils::layerToWorldExtent( const QgsRectangle &extent, double zMin, double zMax, const QgsCoordinateReferenceSystem &layerCrs, const QgsVector3D &mapOrigin, const QgsCoordinateReferenceSystem &mapCrs, const QgsCoordinateTransformContext &context )
642{
643 const QgsRectangle extentMapCrs( Qgs3DUtils::tryReprojectExtent2D( extent, layerCrs, mapCrs, context ) );
644 return mapToWorldExtent( extentMapCrs, zMin, zMax, mapOrigin );
645}
646
648{
649 const QgsRectangle extentMap = worldToMapExtent( bbox, mapOrigin );
650 return Qgs3DUtils::tryReprojectExtent2D( extentMap, mapCrs, layerCrs, context );
651}
652
653QgsAABB Qgs3DUtils::mapToWorldExtent( const QgsRectangle &extent, double zMin, double zMax, const QgsVector3D &mapOrigin )
654{
655 const QgsVector3D extentMin3D( extent.xMinimum(), extent.yMinimum(), zMin );
656 const QgsVector3D extentMax3D( extent.xMaximum(), extent.yMaximum(), zMax );
657 const QgsVector3D worldExtentMin3D = mapToWorldCoordinates( extentMin3D, mapOrigin );
658 const QgsVector3D worldExtentMax3D = mapToWorldCoordinates( extentMax3D, mapOrigin );
659 QgsAABB rootBbox( worldExtentMin3D.x(), worldExtentMin3D.y(), worldExtentMin3D.z(), worldExtentMax3D.x(), worldExtentMax3D.y(), worldExtentMax3D.z() );
660 return rootBbox;
661}
662
664{
665 const QgsVector3D extentMin3D( box3D.xMinimum(), box3D.yMinimum(), box3D.zMinimum() );
666 const QgsVector3D extentMax3D( box3D.xMaximum(), box3D.yMaximum(), box3D.zMaximum() );
667 const QgsVector3D worldExtentMin3D = mapToWorldCoordinates( extentMin3D, mapOrigin );
668 const QgsVector3D worldExtentMax3D = mapToWorldCoordinates( extentMax3D, mapOrigin );
669 // casting to float should be ok, assuming that the map origin is not too far from the box
670 return QgsAABB( static_cast<float>( worldExtentMin3D.x() ), static_cast<float>( worldExtentMin3D.y() ), static_cast<float>( worldExtentMin3D.z() ), static_cast<float>( worldExtentMax3D.x() ), static_cast<float>( worldExtentMax3D.y() ), static_cast<float>( worldExtentMax3D.z() ) );
671}
672
674{
675 const QgsVector3D worldExtentMin3D = Qgs3DUtils::worldToMapCoordinates( QgsVector3D( bbox.xMin, bbox.yMin, bbox.zMin ), mapOrigin );
676 const QgsVector3D worldExtentMax3D = Qgs3DUtils::worldToMapCoordinates( QgsVector3D( bbox.xMax, bbox.yMax, bbox.zMax ), mapOrigin );
677 const QgsRectangle extentMap( worldExtentMin3D.x(), worldExtentMin3D.y(), worldExtentMax3D.x(), worldExtentMax3D.y() );
678 // we discard zMin/zMax here because we don't need it
679 return extentMap;
680}
681
682
684{
685 const QgsVector3D mapPoint1 = worldToMapCoordinates( worldPoint1, origin1 );
686 QgsVector3D mapPoint2 = mapPoint1;
687 if ( crs1 != crs2 )
688 {
689 // reproject if necessary
690 const QgsCoordinateTransform ct( crs1, crs2, context );
691 try
692 {
693 const QgsPointXY pt = ct.transform( QgsPointXY( mapPoint1.x(), mapPoint1.y() ) );
694 mapPoint2.set( pt.x(), pt.y(), mapPoint1.z() );
695 }
696 catch ( const QgsCsException & )
697 {
698 // bad luck, can't reproject for some reason
699 }
700 }
701 return mapToWorldCoordinates( mapPoint2, origin2 );
702}
703
704void Qgs3DUtils::estimateVectorLayerZRange( QgsVectorLayer *layer, double &zMin, double &zMax )
705{
706 if ( !QgsWkbTypes::hasZ( layer->wkbType() ) )
707 {
708 zMin = 0;
709 zMax = 0;
710 return;
711 }
712
713 zMin = std::numeric_limits<double>::max();
714 zMax = std::numeric_limits<double>::lowest();
715
716 QgsFeature f;
717 QgsFeatureIterator it = layer->getFeatures( QgsFeatureRequest().setNoAttributes().setLimit( 100 ) );
718 while ( it.nextFeature( f ) )
719 {
720 const QgsGeometry g = f.geometry();
721 for ( auto vit = g.vertices_begin(); vit != g.vertices_end(); ++vit )
722 {
723 const double z = ( *vit ).z();
724 if ( z < zMin )
725 zMin = z;
726 if ( z > zMax )
727 zMax = z;
728 }
729 }
730
731 if ( zMin == std::numeric_limits<double>::max() && zMax == std::numeric_limits<double>::lowest() )
732 {
733 zMin = 0;
734 zMax = 0;
735 }
736}
737
739{
741 settings.setAmbient( material->ambient() );
742 settings.setDiffuse( material->diffuse() );
743 settings.setSpecular( material->specular() );
744 settings.setShininess( material->shininess() );
745 return settings;
746}
747
748QgsRay3D Qgs3DUtils::rayFromScreenPoint( const QPoint &point, const QSize &windowSize, Qt3DRender::QCamera *camera )
749{
750 const QVector3D deviceCoords( point.x(), point.y(), 0.0 );
751 // normalized device coordinates
752 const QVector3D normDeviceCoords( 2.0 * deviceCoords.x() / windowSize.width() - 1.0f, 1.0f - 2.0 * deviceCoords.y() / windowSize.height(), camera->nearPlane() );
753 // clip coordinates
754 const QVector4D rayClip( normDeviceCoords.x(), normDeviceCoords.y(), -1.0, 0.0 );
755
756 const QMatrix4x4 invertedProjMatrix = camera->projectionMatrix().inverted();
757 const QMatrix4x4 invertedViewMatrix = camera->viewMatrix().inverted();
758
759 // ray direction in view coordinates
760 QVector4D rayDirView = invertedProjMatrix * rayClip;
761 // ray origin in world coordinates
762 const QVector4D rayOriginWorld = invertedViewMatrix * QVector4D( 0.0f, 0.0f, 0.0f, 1.0f );
763
764 // ray direction in world coordinates
765 rayDirView.setZ( -1.0f );
766 rayDirView.setW( 0.0f );
767 const QVector4D rayDirWorld4D = invertedViewMatrix * rayDirView;
768 QVector3D rayDirWorld( rayDirWorld4D.x(), rayDirWorld4D.y(), rayDirWorld4D.z() );
769 rayDirWorld = rayDirWorld.normalized();
770
771 return QgsRay3D( QVector3D( rayOriginWorld ), rayDirWorld );
772}
773
774QVector3D Qgs3DUtils::screenPointToWorldPos( const QPoint &screenPoint, double depth, const QSize &screenSize, Qt3DRender::QCamera *camera )
775{
776 // Transform pixel coordinates and [0.0, 1.0]-range sampled depth to [-1.0, 1.0]
777 // normalised device coordinates used by projection matrix.
778 QVector3D screenPointNdc {
779 ( static_cast<float>( screenPoint.x() ) / ( static_cast<float>( screenSize.width() ) / 2.0f ) - 1.0f ),
780 -( static_cast<float>( screenPoint.y() ) / ( static_cast<float>( screenSize.height() ) / 2.0f ) - 1.0f ),
781 static_cast<float>( depth * 2 - 1 ),
782 };
783
784 // Apply inverse of projection matrix, then view matrix, to get from NDC to world coords.
785 return camera->viewMatrix().inverted() * camera->projectionMatrix().inverted() * screenPointNdc;
786}
787
788void Qgs3DUtils::pitchAndYawFromViewVector( QVector3D vect, double &pitch, double &yaw )
789{
790 vect.normalize();
791
792 pitch = qRadiansToDegrees( qAcos( vect.y() ) );
793 yaw = qRadiansToDegrees( qAtan2( -vect.z(), vect.x() ) ) + 90;
794}
795
796QVector2D Qgs3DUtils::screenToTextureCoordinates( QVector2D screenXY, QSize winSize )
797{
798 return QVector2D( screenXY.x() / winSize.width(), 1 - screenXY.y() / winSize.width() );
799}
800
801QVector2D Qgs3DUtils::textureToScreenCoordinates( QVector2D textureXY, QSize winSize )
802{
803 return QVector2D( textureXY.x() * winSize.width(), ( 1 - textureXY.y() ) * winSize.height() );
804}
805
806std::unique_ptr<QgsPointCloudLayer3DRenderer> Qgs3DUtils::convert2DPointCloudRendererTo3D( QgsPointCloudRenderer *renderer )
807{
808 if ( !renderer )
809 return nullptr;
810
811 std::unique_ptr<QgsPointCloud3DSymbol> symbol3D;
812 if ( renderer->type() == QLatin1String( "ramp" ) )
813 {
814 const QgsPointCloudAttributeByRampRenderer *renderer2D = qgis::down_cast<const QgsPointCloudAttributeByRampRenderer *>( renderer );
815 symbol3D = std::make_unique<QgsColorRampPointCloud3DSymbol>();
816 QgsColorRampPointCloud3DSymbol *symbol = static_cast<QgsColorRampPointCloud3DSymbol *>( symbol3D.get() );
817 symbol->setAttribute( renderer2D->attribute() );
818 symbol->setColorRampShaderMinMax( renderer2D->minimum(), renderer2D->maximum() );
819 symbol->setColorRampShader( renderer2D->colorRampShader() );
820 }
821 else if ( renderer->type() == QLatin1String( "rgb" ) )
822 {
823 const QgsPointCloudRgbRenderer *renderer2D = qgis::down_cast<const QgsPointCloudRgbRenderer *>( renderer );
824 symbol3D = std::make_unique<QgsRgbPointCloud3DSymbol>();
825 QgsRgbPointCloud3DSymbol *symbol = static_cast<QgsRgbPointCloud3DSymbol *>( symbol3D.get() );
826 symbol->setRedAttribute( renderer2D->redAttribute() );
827 symbol->setGreenAttribute( renderer2D->greenAttribute() );
828 symbol->setBlueAttribute( renderer2D->blueAttribute() );
829
830 symbol->setRedContrastEnhancement( renderer2D->redContrastEnhancement() ? new QgsContrastEnhancement( *renderer2D->redContrastEnhancement() ) : nullptr );
831 symbol->setGreenContrastEnhancement( renderer2D->greenContrastEnhancement() ? new QgsContrastEnhancement( *renderer2D->greenContrastEnhancement() ) : nullptr );
832 symbol->setBlueContrastEnhancement( renderer2D->blueContrastEnhancement() ? new QgsContrastEnhancement( *renderer2D->blueContrastEnhancement() ) : nullptr );
833 }
834 else if ( renderer->type() == QLatin1String( "classified" ) )
835 {
836 const QgsPointCloudClassifiedRenderer *renderer2D = qgis::down_cast<const QgsPointCloudClassifiedRenderer *>( renderer );
837 symbol3D = std::make_unique<QgsClassificationPointCloud3DSymbol>();
838 QgsClassificationPointCloud3DSymbol *symbol = static_cast<QgsClassificationPointCloud3DSymbol *>( symbol3D.get() );
839 symbol->setAttribute( renderer2D->attribute() );
840 symbol->setCategoriesList( renderer2D->categories() );
841 }
842
843 if ( symbol3D )
844 {
845 auto renderer3D = std::make_unique<QgsPointCloudLayer3DRenderer>();
846 renderer3D->setSymbol( symbol3D.release() );
847 return renderer3D;
848 }
849 return nullptr;
850}
851
853{
854 QgsRayCastResult results;
855 const QList<QgsMapLayer *> keys = scene->layers();
856 for ( QgsMapLayer *layer : keys )
857 {
858 Qt3DCore::QEntity *entity = scene->layerEntity( layer );
859
860 if ( QgsChunkedEntity *chunkedEntity = qobject_cast<QgsChunkedEntity *>( entity ) )
861 {
862 const QList<QgsRayCastHit> hits = chunkedEntity->rayIntersection( ray, context );
863
864 if ( !hits.isEmpty() )
865 results.addLayerHits( layer, hits );
866 }
867 }
868 if ( QgsTerrainEntity *terrain = scene->terrainEntity() )
869 {
870 const QList<QgsRayCastHit> hits = terrain->rayIntersection( ray, context );
871
872 if ( !hits.isEmpty() )
873 results.addTerrainHits( hits );
874 }
875 if ( QgsGlobeEntity *globe = scene->globeEntity() )
876 {
877 const QList<QgsRayCastHit> hits = globe->rayIntersection( ray, context );
878
879 if ( !hits.isEmpty() )
880 results.addTerrainHits( hits );
881 }
882 return results;
883}
884
885float Qgs3DUtils::screenSpaceError( float epsilon, float distance, int screenSize, float fov )
886{
887 /* This routine approximately calculates how an error (epsilon) of an object in world coordinates
888 * at given distance (between camera and the object) will look like in screen coordinates.
889 *
890 * the math below simply uses triangle similarity:
891 *
892 * epsilon phi
893 * ----------------------------- = ----------------
894 * [ frustum width at distance ] [ screen width ]
895 *
896 * Then we solve for phi, substituting [frustum width at distance] = 2 * distance * tan(fov / 2)
897 *
898 * ________xxx__ xxx = real world error (epsilon)
899 * \ | / x = screen space error (phi)
900 * \ | /
901 * \___|_x_/ near plane (screen space)
902 * \ | /
903 * \ | /
904 * \|/ angle = field of view
905 * camera
906 */
907 float phi = epsilon * static_cast<float>( screenSize ) / static_cast<float>( 2 * distance * tan( fov * M_PI / ( 2 * 180 ) ) );
908 return phi;
909}
910
911void Qgs3DUtils::computeBoundingBoxNearFarPlanes( const QgsAABB &bbox, const QMatrix4x4 &viewMatrix, float &fnear, float &ffar )
912{
913 fnear = 1e9;
914 ffar = 0;
915
916 for ( int i = 0; i < 8; ++i )
917 {
918 const QVector4D p( ( ( i >> 0 ) & 1 ) ? bbox.xMin : bbox.xMax, ( ( i >> 1 ) & 1 ) ? bbox.yMin : bbox.yMax, ( ( i >> 2 ) & 1 ) ? bbox.zMin : bbox.zMax, 1 );
919
920 const QVector4D pc = viewMatrix * p;
921
922 const float dst = -pc.z(); // in camera coordinates, x grows right, y grows down, z grows to the back
923 fnear = std::min( fnear, dst );
924 ffar = std::max( ffar, dst );
925 }
926}
927
928Qt3DRender::QCullFace::CullingMode Qgs3DUtils::qt3DcullingMode( Qgs3DTypes::CullingMode mode )
929{
930 switch ( mode )
931 {
933 return Qt3DRender::QCullFace::NoCulling;
935 return Qt3DRender::QCullFace::Front;
936 case Qgs3DTypes::Back:
937 return Qt3DRender::QCullFace::Back;
939 return Qt3DRender::QCullFace::FrontAndBack;
940 }
941 return Qt3DRender::QCullFace::NoCulling;
942}
943
944
945QByteArray Qgs3DUtils::addDefinesToShaderCode( const QByteArray &shaderCode, const QStringList &defines )
946{
947 // There is one caveat to take care of - GLSL source code needs to start with #version as
948 // a first directive, otherwise we get the old GLSL 100 version. So we can't just prepend the
949 // shader source code, but insert our defines at the right place.
950
951 QStringList defineLines;
952 for ( const QString &define : defines )
953 defineLines += "#define " + define + "\n";
954
955 QString definesText = defineLines.join( QString() );
956
957 QByteArray newShaderCode = shaderCode;
958 int versionIndex = shaderCode.indexOf( "#version " );
959 int insertionIndex = versionIndex == -1 ? 0 : shaderCode.indexOf( '\n', versionIndex + 1 ) + 1;
960 newShaderCode.insert( insertionIndex, definesText.toLatin1() );
961 return newShaderCode;
962}
963
964QByteArray Qgs3DUtils::removeDefinesFromShaderCode( const QByteArray &shaderCode, const QStringList &defines )
965{
966 QByteArray newShaderCode = shaderCode;
967
968 for ( const QString &define : defines )
969 {
970 const QString defineLine = "#define " + define + "\n";
971 const int defineLineIndex = newShaderCode.indexOf( defineLine.toUtf8() );
972 if ( defineLineIndex != -1 )
973 {
974 newShaderCode.remove( defineLineIndex, defineLine.size() );
975 }
976 }
977
978 return newShaderCode;
979}
980
981void Qgs3DUtils::decomposeTransformMatrix( const QMatrix4x4 &matrix, QVector3D &translation, QQuaternion &rotation, QVector3D &scale )
982{
983 // decompose the transform matrix
984 // assuming the last row has values [0 0 0 1]
985 // see https://math.stackexchange.com/questions/237369/given-this-transformation-matrix-how-do-i-decompose-it-into-translation-rotati
986 const float *md = matrix.data(); // returns data in column-major order
987 const float sx = QVector3D( md[0], md[1], md[2] ).length();
988 const float sy = QVector3D( md[4], md[5], md[6] ).length();
989 const float sz = QVector3D( md[8], md[9], md[10] ).length();
990 float rd[9] = {
991 md[0] / sx,
992 md[4] / sy,
993 md[8] / sz,
994 md[1] / sx,
995 md[5] / sy,
996 md[9] / sz,
997 md[2] / sx,
998 md[6] / sy,
999 md[10] / sz,
1000 };
1001 const QMatrix3x3 rot3x3( rd ); // takes data in row-major order
1002
1003 scale = QVector3D( sx, sy, sz );
1004 rotation = QQuaternion::fromRotationMatrix( rot3x3 );
1005 translation = QVector3D( md[12], md[13], md[14] );
1006}
1007
1008int Qgs3DUtils::openGlMaxClipPlanes( QSurface *surface )
1009{
1010 int numPlanes = 6;
1011
1012 QOpenGLContext context;
1013 context.setFormat( QSurfaceFormat::defaultFormat() );
1014 if ( context.create() )
1015 {
1016 if ( context.makeCurrent( surface ) )
1017 {
1018 QOpenGLFunctions *funcs = context.functions();
1019 funcs->glGetIntegerv( GL_MAX_CLIP_PLANES, &numPlanes );
1020 }
1021 }
1022
1023 return numPlanes;
1024}
1025
1026QQuaternion Qgs3DUtils::rotationFromPitchHeadingAngles( float pitchAngle, float headingAngle )
1027{
1028 return QQuaternion::fromAxisAndAngle( QVector3D( 0, 0, 1 ), headingAngle ) * QQuaternion::fromAxisAndAngle( QVector3D( 1, 0, 0 ), pitchAngle );
1029}
1030
1031QgsPoint Qgs3DUtils::screenPointToMapCoordinates( const QPoint &screenPoint, const QSize size, const QgsCameraController *cameraController, const Qgs3DMapSettings *mapSettings )
1032{
1033 const QgsRay3D ray = rayFromScreenPoint( screenPoint, size, cameraController->camera() );
1034
1035 // pick an arbitrary point mid-way between near and far plane
1036 const float pointDistance = ( cameraController->camera()->farPlane() + cameraController->camera()->nearPlane() ) / 2;
1037 const QVector3D worldPoint = ray.origin() + pointDistance * ray.direction().normalized();
1038 const QgsVector3D mapTransform = worldToMapCoordinates( worldPoint, mapSettings->origin() );
1039 const QgsPoint mapPoint( mapTransform.x(), mapTransform.y(), mapTransform.z() );
1040 return mapPoint;
1041}
1042
1043// computes the portion of the Y=y plane the camera is looking at
1044void Qgs3DUtils::calculateViewExtent( const Qt3DRender::QCamera *camera, float maxRenderingDistance, float z, float &minX, float &maxX, float &minY, float &maxY, float &minZ, float &maxZ )
1045{
1046 const QVector3D cameraPos = camera->position();
1047 const QMatrix4x4 projectionMatrix = camera->projectionMatrix();
1048 const QMatrix4x4 viewMatrix = camera->viewMatrix();
1049 float depth = 1.0f;
1050 QVector4D viewCenter = viewMatrix * QVector4D( camera->viewCenter(), 1.0f );
1051 viewCenter /= viewCenter.w();
1052 viewCenter = projectionMatrix * viewCenter;
1053 viewCenter /= viewCenter.w();
1054 depth = viewCenter.z();
1055 QVector<QVector3D> viewFrustumPoints = {
1056 QVector3D( 0.0f, 0.0f, depth ),
1057 QVector3D( 0.0f, 1.0f, depth ),
1058 QVector3D( 1.0f, 0.0f, depth ),
1059 QVector3D( 1.0f, 1.0f, depth ),
1060 QVector3D( 0.0f, 0.0f, 0 ),
1061 QVector3D( 0.0f, 1.0f, 0 ),
1062 QVector3D( 1.0f, 0.0f, 0 ),
1063 QVector3D( 1.0f, 1.0f, 0 )
1064 };
1065 maxX = std::numeric_limits<float>::lowest();
1066 maxY = std::numeric_limits<float>::lowest();
1067 maxZ = std::numeric_limits<float>::lowest();
1068 minX = std::numeric_limits<float>::max();
1069 minY = std::numeric_limits<float>::max();
1070 minZ = std::numeric_limits<float>::max();
1071 for ( int i = 0; i < viewFrustumPoints.size(); ++i )
1072 {
1073 // convert from view port space to world space
1074 viewFrustumPoints[i] = viewFrustumPoints[i].unproject( viewMatrix, projectionMatrix, QRect( 0, 0, 1, 1 ) );
1075 minX = std::min( minX, viewFrustumPoints[i].x() );
1076 maxX = std::max( maxX, viewFrustumPoints[i].x() );
1077 minY = std::min( minY, viewFrustumPoints[i].y() );
1078 maxY = std::max( maxY, viewFrustumPoints[i].y() );
1079 minZ = std::min( minZ, viewFrustumPoints[i].z() );
1080 maxZ = std::max( maxZ, viewFrustumPoints[i].z() );
1081 // find the intersection between the line going from cameraPos to the frustum quad point
1082 // and the horizontal plane Z=z
1083 // if the intersection is on the back side of the viewing panel we get a point that is
1084 // maxRenderingDistance units in front of the camera
1085 const QVector3D pt = cameraPos;
1086 const QVector3D vect = ( viewFrustumPoints[i] - pt ).normalized();
1087 float t = ( z - pt.z() ) / vect.z();
1088 if ( t < 0 )
1089 t = maxRenderingDistance;
1090 else
1091 t = std::min( t, maxRenderingDistance );
1092 viewFrustumPoints[i] = pt + t * vect;
1093 minX = std::min( minX, viewFrustumPoints[i].x() );
1094 maxX = std::max( maxX, viewFrustumPoints[i].x() );
1095 minY = std::min( minY, viewFrustumPoints[i].y() );
1096 maxY = std::max( maxY, viewFrustumPoints[i].y() );
1097 minZ = std::min( minZ, viewFrustumPoints[i].z() );
1098 maxZ = std::max( maxZ, viewFrustumPoints[i].z() );
1099 }
1100}
1101
1102QList<QVector4D> Qgs3DUtils::lineSegmentToClippingPlanes( const QgsVector3D &startPoint, const QgsVector3D &endPoint, const double distance, const QgsVector3D &origin )
1103{
1104 // return empty vector if distance is negative
1105 if ( distance < 0 )
1106 return QList<QVector4D>();
1107
1108 QgsVector3D lineDirection( endPoint - startPoint );
1109 lineDirection.normalize();
1110 const QgsVector lineDirection2DPerp = QgsVector( lineDirection.x(), lineDirection.y() ).perpVector();
1111 const QgsVector3D linePerp( lineDirection2DPerp.x(), lineDirection2DPerp.y(), 0 );
1112
1113 QList<QVector4D> clippingPlanes;
1114 QgsVector3D planePoint;
1115 double originDistance;
1116
1117 // the naming is assigned according to line direction
1119 planePoint = startPoint;
1120 originDistance = QgsVector3D::dotProduct( planePoint - origin, lineDirection );
1121 clippingPlanes << QVector4D( static_cast<float>( lineDirection.x() ), static_cast<float>( lineDirection.y() ), 0, static_cast<float>( -originDistance ) );
1122
1124 planePoint = startPoint + linePerp * distance;
1125 originDistance = QgsVector3D::dotProduct( planePoint - origin, -linePerp );
1126 clippingPlanes << QVector4D( static_cast<float>( -linePerp.x() ), static_cast<float>( -linePerp.y() ), 0, static_cast<float>( -originDistance ) );
1127
1129 planePoint = endPoint;
1130 originDistance = QgsVector3D::dotProduct( planePoint - origin, -lineDirection );
1131 clippingPlanes << QVector4D( static_cast<float>( -lineDirection.x() ), static_cast<float>( -lineDirection.y() ), 0, static_cast<float>( -originDistance ) );
1132
1134 planePoint = startPoint - linePerp * distance;
1135 originDistance = QgsVector3D::dotProduct( planePoint - origin, linePerp );
1136 clippingPlanes << QVector4D( static_cast<float>( linePerp.x() ), static_cast<float>( linePerp.y() ), 0, static_cast<float>( -originDistance ) );
1137
1138 return clippingPlanes;
1139}
1140
1141QgsCameraPose Qgs3DUtils::lineSegmentToCameraPose( const QgsVector3D &startPoint, const QgsVector3D &endPoint, const QgsDoubleRange &elevationRange, const float fieldOfView, const QgsVector3D &worldOrigin )
1142{
1143 QgsCameraPose cameraPose;
1144 // we tilt the view slightly to see flat layers if the elevationRange is infinite (scene has flat terrain, vector layers...)
1145 elevationRange.isInfinite() ? cameraPose.setPitchAngle( 89 ) : cameraPose.setPitchAngle( 90 );
1146
1147 // calculate the middle of the front side defined by clipping planes
1148 QgsVector linePerpVec( ( endPoint - startPoint ).x(), ( endPoint - startPoint ).y() );
1149 linePerpVec = -linePerpVec.normalized().perpVector();
1150 const QgsVector3D linePerpVec3D( linePerpVec.x(), linePerpVec.y(), 0 );
1151 QgsVector3D middle( startPoint + ( endPoint - startPoint ) / 2 );
1152
1153 double elevationRangeHalf;
1154 elevationRange.isInfinite() ? elevationRangeHalf = 0 : elevationRangeHalf = ( elevationRange.upper() - elevationRange.lower() ) / 2;
1155 const double side = std::max( middle.distance( startPoint ), elevationRangeHalf );
1156 const double distance = ( side / std::tan( fieldOfView / 2 * M_PI / 180 ) ) * 1.05;
1157 cameraPose.setDistanceFromCenterPoint( static_cast<float>( distance ) );
1158
1159 elevationRange.isInfinite() ? middle.setZ( 0 ) : middle.setZ( elevationRange.lower() + ( elevationRange.upper() - elevationRange.lower() ) / 2 );
1160 cameraPose.setCenterPoint( mapToWorldCoordinates( middle, worldOrigin ) );
1161
1162 const QgsVector3D northDirectionVec( 0, -1, 0 );
1163 // calculate the angle between vector pointing to the north and vector pointing from the front side of clipped area
1164 float yawAngle = static_cast<float>( acos( QgsVector3D::dotProduct( linePerpVec3D, northDirectionVec ) ) * 180 / M_PI );
1165 // check if the angle between the view point is to the left or right of the scene north, apply angle offset if necessary for camera
1166 if ( QgsVector3D::crossProduct( linePerpVec3D, northDirectionVec ).z() > 0 )
1167 {
1168 yawAngle = 360 - yawAngle;
1169 }
1170 cameraPose.setHeadingAngle( yawAngle );
1171
1172 return cameraPose;
1173}
1174
1175std::unique_ptr<Qt3DRender::QCamera> Qgs3DUtils::copyCamera( Qt3DRender::QCamera *cam )
1176{
1177 auto copy = std::make_unique<Qt3DRender::QCamera>();
1178 copy->setPosition( cam->position() );
1179 copy->setViewCenter( cam->viewCenter() );
1180 copy->setUpVector( cam->upVector() );
1181 copy->setProjectionMatrix( cam->projectionMatrix() );
1182 copy->setNearPlane( cam->nearPlane() );
1183 copy->setFarPlane( cam->farPlane() );
1184 copy->setAspectRatio( cam->aspectRatio() );
1185 copy->setFieldOfView( cam->fieldOfView() );
1186 return copy;
1187}
AltitudeClamping
Altitude clamping.
Definition qgis.h:3982
@ Relative
Elevation is relative to terrain height (final elevation = terrain elevation + feature elevation).
Definition qgis.h:3984
@ Terrain
Elevation is clamped to terrain (final elevation = terrain elevation).
Definition qgis.h:3985
@ Absolute
Elevation is taken directly from feature and is independent of terrain height (final elevation = feat...
Definition qgis.h:3983
AltitudeBinding
Altitude binding.
Definition qgis.h:3995
@ Centroid
Clamp just centroid of feature.
Definition qgis.h:3997
@ Vertex
Clamp every vertex of feature.
Definition qgis.h:3996
Holds information about animation in 3D view.
Keyframe interpolate(float time) const
Interpolates camera position and rotation at the given point in time.
float duration() const
Returns duration of the whole animation in seconds.
Keyframes keyFrames() const
Returns keyframes of the animation.
Entity that encapsulates our 3D scene - contains all other entities (such as terrain) as children.
QgsGlobeEntity * globeEntity()
Returns globe entity (may be nullptr if not using globe scene, terrain rendering is disabled or when ...
QgsCameraController * cameraController() const
Returns camera controller.
@ Ready
The scene is fully loaded/updated.
int totalPendingJobsCount() const
Returns number of pending jobs for all chunked entities.
QgsTerrainEntity * terrainEntity()
Returns terrain entity (may be nullptr if using globe scene, terrain rendering is disabled or when te...
Qt3DCore::QEntity * layerEntity(QgsMapLayer *layer) const
Returns the entity belonging to layer.
void sceneStateChanged()
Emitted when the scene's state has changed.
SceneState sceneState() const
Returns the current state of the scene.
QList< QgsMapLayer * > layers() const
Returns the layers that contain chunked entities.
Definition of the world.
QgsVector3D origin() const
Returns coordinates in map CRS at which 3D scene has origin (0,0,0).
Rendering context for preparation of 3D entities.
const QgsAbstractTerrainSettings * terrainSettings() const
Returns the terrain settings.
QgsTerrainGenerator * terrainGenerator() const
Returns the terrain generator.
bool terrainRenderingEnabled() const
Returns whether the 2D terrain surface will be rendered.
static const char * PROP_NAME_3D_RENDERER_FLAG
Qt property name to hold the 3D geometry renderer flag.
Definition qgs3dtypes.h:43
CullingMode
Triangle culling mode.
Definition qgs3dtypes.h:35
@ FrontAndBack
Will not render anything.
Definition qgs3dtypes.h:39
@ NoCulling
Will render both front and back faces of triangles.
Definition qgs3dtypes.h:36
@ Front
Will render only back faces of triangles.
Definition qgs3dtypes.h:37
@ Back
Will render only front faces of triangles (recommended when input data are consistent).
Definition qgs3dtypes.h:38
static QgsVector3D transformWorldCoordinates(const QgsVector3D &worldPoint1, const QgsVector3D &origin1, const QgsCoordinateReferenceSystem &crs1, const QgsVector3D &origin2, const QgsCoordinateReferenceSystem &crs2, const QgsCoordinateTransformContext &context)
Transforms a world point from (origin1, crs1) to (origin2, crs2).
static QQuaternion rotationFromPitchHeadingAngles(float pitchAngle, float headingAngle)
Returns rotation quaternion that performs rotation around X axis by pitchAngle, followed by rotation ...
static QByteArray removeDefinesFromShaderCode(const QByteArray &shaderCode, const QStringList &defines)
Removes some define macros from a shader source code.
static Qt3DRender::QCullFace::CullingMode qt3DcullingMode(Qgs3DTypes::CullingMode mode)
Converts Qgs3DTypes::CullingMode mode into its Qt3D equivalent.
static QList< QVector4D > lineSegmentToClippingPlanes(const QgsVector3D &startPoint, const QgsVector3D &endPoint, double distance, const QgsVector3D &origin)
Returns a list of 4 planes derived from a line extending from startPoint to endPoint.
static Qgs3DTypes::CullingMode cullingModeFromString(const QString &str)
Converts a string to a value from CullingMode enum.
static Qgis::AltitudeClamping altClampingFromString(const QString &str)
Converts a string to a value from AltitudeClamping enum.
static QString matrix4x4toString(const QMatrix4x4 &m)
Converts a 4x4 transform matrix to a string.
static QgsRectangle worldToMapExtent(const QgsAABB &bbox, const QgsVector3D &mapOrigin)
Converts axis aligned bounding box in 3D world coordinates to extent in map coordinates.
static QgsRectangle worldToLayerExtent(const QgsAABB &bbox, const QgsCoordinateReferenceSystem &layerCrs, const QgsVector3D &mapOrigin, const QgsCoordinateReferenceSystem &mapCrs, const QgsCoordinateTransformContext &context)
Converts axis aligned bounding box in 3D world coordinates to extent in map layer CRS.
static void pitchAndYawFromViewVector(QVector3D vect, double &pitch, double &yaw)
Function used to extract the pitch and yaw (also known as heading) angles in degrees from the view ve...
static void decomposeTransformMatrix(const QMatrix4x4 &matrix, QVector3D &translation, QQuaternion &rotation, QVector3D &scale)
Tries to decompose a 4x4 transform matrix into translation, rotation and scale components.
static int maxZoomLevel(double tile0width, double tileResolution, double maxError)
Calculates the highest needed zoom level for tiles in quad-tree given width of the base tile (zoom le...
static QgsAABB mapToWorldExtent(const QgsRectangle &extent, double zMin, double zMax, const QgsVector3D &mapOrigin)
Converts map extent to axis aligned bounding box in 3D world coordinates.
static QgsAABB layerToWorldExtent(const QgsRectangle &extent, double zMin, double zMax, const QgsCoordinateReferenceSystem &layerCrs, const QgsVector3D &mapOrigin, const QgsCoordinateReferenceSystem &mapCrs, const QgsCoordinateTransformContext &context)
Converts extent (in map layer's CRS) to axis aligned bounding box in 3D world coordinates.
static Qgis::AltitudeBinding altBindingFromString(const QString &str)
Converts a string to a value from AltitudeBinding enum.
static double calculateEntityGpuMemorySize(Qt3DCore::QEntity *entity)
Calculates approximate usage of GPU memory by an entity.
static std::unique_ptr< Qt3DRender::QCamera > copyCamera(Qt3DRender::QCamera *cam)
Returns new camera object with copied properties.
static QString cullingModeToString(Qgs3DTypes::CullingMode mode)
Converts a value from CullingMode enum to a string.
static bool isCullable(const QgsAABB &bbox, const QMatrix4x4 &viewProjectionMatrix)
Returns true if bbox is completely outside the current viewing volume.
static QVector2D screenToTextureCoordinates(QVector2D screenXY, QSize winSize)
Converts from screen coordinates to texture coordinates.
static float screenSpaceError(float epsilon, float distance, int screenSize, float fov)
This routine approximately calculates how an error (epsilon) of an object in world coordinates at giv...
static void estimateVectorLayerZRange(QgsVectorLayer *layer, double &zMin, double &zMax)
Try to estimate range of Z values used in the given vector layer and store that in zMin and zMax.
static QgsPoint screenPointToMapCoordinates(const QPoint &screenPoint, QSize size, const QgsCameraController *cameraController, const Qgs3DMapSettings *mapSettings)
Transform the given screen point to QgsPoint in map coordinates.
static QgsPhongMaterialSettings phongMaterialFromQt3DComponent(Qt3DExtras::QPhongMaterial *material)
Returns phong material settings object based on the Qt3D material.
static QString altClampingToString(Qgis::AltitudeClamping altClamp)
Converts a value from AltitudeClamping enum to a string.
static QgsRectangle tryReprojectExtent2D(const QgsRectangle &extent, const QgsCoordinateReferenceSystem &crs1, const QgsCoordinateReferenceSystem &crs2, const QgsCoordinateTransformContext &context)
Reprojects extent from crs1 to crs2 coordinate reference system with context context.
static QByteArray addDefinesToShaderCode(const QByteArray &shaderCode, const QStringList &defines)
Inserts some define macros into a shader source code.
static QgsRayCastResult castRay(Qgs3DMapScene *scene, const QgsRay3D &ray, const QgsRayCastContext &context)
Casts a ray through the scene and returns information about the intersecting entities (ray uses World...
static QMatrix4x4 stringToMatrix4x4(const QString &str)
Convert a string to a 4x4 transform matrix.
static QgsVector3D worldToMapCoordinates(const QgsVector3D &worldCoords, const QgsVector3D &origin)
Converts 3D world coordinates to map coordinates (applies offset).
static QgsVector3D mapToWorldCoordinates(const QgsVector3D &mapCoords, const QgsVector3D &origin)
Converts map coordinates to 3D world coordinates (applies offset).
static QVector2D textureToScreenCoordinates(QVector2D textureXY, QSize winSize)
Converts from texture coordinates coordinates to screen coordinates.
static void computeBoundingBoxNearFarPlanes(const QgsAABB &bbox, const QMatrix4x4 &viewMatrix, float &fnear, float &ffar)
This routine computes nearPlane farPlane from the closest and farthest corners point of bounding box ...
static bool exportAnimation(const Qgs3DAnimationSettings &animationSettings, Qgs3DMapSettings &mapSettings, int framesPerSecond, const QString &outputDirectory, const QString &fileNameTemplate, const QSize &outputSize, QString &error, QgsFeedback *feedback=nullptr)
Captures 3D animation frames to the selected folder.
static QVector3D screenPointToWorldPos(const QPoint &screenPoint, double depth, const QSize &screenSize, Qt3DRender::QCamera *camera)
Converts the clicked mouse position to the corresponding 3D world coordinates.
static void waitForFrame(QgsAbstract3DEngine &engine, Qgs3DMapScene *scene)
Waits for a frame to be rendered.
static float clampAltitude(const QgsPoint &p, Qgis::AltitudeClamping altClamp, Qgis::AltitudeBinding altBind, float offset, const QgsPoint &centroid, const Qgs3DRenderContext &context)
Clamps altitude of a vertex according to the settings, returns Z value.
static QString altBindingToString(Qgis::AltitudeBinding altBind)
Converts a value from AltitudeBinding enum to a string.
static void clampAltitudes(QgsLineString *lineString, Qgis::AltitudeClamping altClamp, Qgis::AltitudeBinding altBind, const QgsPoint &centroid, float offset, const Qgs3DRenderContext &context)
Clamps altitude of vertices of a linestring according to the settings.
static QgsRay3D rayFromScreenPoint(const QPoint &point, const QSize &windowSize, Qt3DRender::QCamera *camera)
Convert from clicked point on the screen to a ray in world coordinates.
static QImage captureSceneImage(QgsAbstract3DEngine &engine, Qgs3DMapScene *scene)
Captures image of the current 3D scene of a 3D engine.
static QgsCameraPose lineSegmentToCameraPose(const QgsVector3D &startPoint, const QgsVector3D &endPoint, const QgsDoubleRange &elevationRange, float fieldOfView, const QgsVector3D &worldOrigin)
Returns the camera pose for a camera looking at mid-point between startPoint and endPoint.
static void waitForEntitiesLoaded(Qgs3DMapScene *scene)
Waits for all entities in the scene to be loaded.
static void calculateViewExtent(const Qt3DRender::QCamera *camera, float maxRenderingDistance, float z, float &minX, float &maxX, float &minY, float &maxY, float &minZ, float &maxZ)
Computes the portion of the Y=y plane the camera is looking at.
static std::unique_ptr< QgsPointCloudLayer3DRenderer > convert2DPointCloudRendererTo3D(QgsPointCloudRenderer *renderer)
Creates a QgsPointCloudLayer3DRenderer matching the symbol settings of a given QgsPointCloudRenderer.
static void extractPointPositions(const QgsFeature &f, const Qgs3DRenderContext &context, const QgsVector3D &chunkOrigin, Qgis::AltitudeClamping altClamp, QVector< QVector3D > &positions)
Calculates (x,y,z) positions of (multi)point from the given feature.
static QImage captureSceneDepthBuffer(QgsAbstract3DEngine &engine, Qgs3DMapScene *scene)
Captures the depth buffer of the current 3D scene of a 3D engine.
static int openGlMaxClipPlanes(QSurface *surface)
Gets the maximum number of clip planes that can be used.
Axis-aligned bounding box - in world coords.
Definition qgsaabb.h:35
float yMax
Definition qgsaabb.h:102
float xMax
Definition qgsaabb.h:101
float xMin
Definition qgsaabb.h:98
float zMax
Definition qgsaabb.h:103
float yMin
Definition qgsaabb.h:99
float zMin
Definition qgsaabb.h:100
Base class for 3D engine implementation.
void requestCaptureImage()
Starts a request for an image rendered by the engine.
void requestDepthBufferCapture()
Starts a request for an image containing the depth buffer data of the engine.
void imageCaptured(const QImage &image)
Emitted after a call to requestCaptureImage() to return the captured image.
void depthBufferCaptured(const QImage &image)
Emitted after a call to requestDepthBufferCapture() to return the captured depth buffer.
virtual Qt3DRender::QRenderSettings * renderSettings()=0
Returns access to the engine's render settings (the frame graph can be accessed from here).
Abstract base class for all geometries.
vertex_iterator vertices_end() const
Returns STL-style iterator pointing to the imaginary vertex after the last vertex of the geometry.
bool is3D() const
Returns true if the geometry is 3D and contains a z-value.
vertex_iterator vertices_begin() const
Returns STL-style iterator pointing to the first vertex of the geometry.
virtual QgsPoint centroid() const
Returns the centroid of the geometry.
double verticalScale() const
Returns the vertical scale (exaggeration) for terrain.
A 3-dimensional box composed of x, y, z coordinates.
Definition qgsbox3d.h:42
double yMaximum() const
Returns the maximum y value.
Definition qgsbox3d.h:230
double xMinimum() const
Returns the minimum x value.
Definition qgsbox3d.h:195
double zMaximum() const
Returns the maximum z value.
Definition qgsbox3d.h:258
double xMaximum() const
Returns the maximum x value.
Definition qgsbox3d.h:202
double zMinimum() const
Returns the minimum z value.
Definition qgsbox3d.h:251
double yMinimum() const
Returns the minimum y value.
Definition qgsbox3d.h:223
Object that controls camera movement based on user input.
void setLookingAtMapPoint(const QgsVector3D &point, float distance, float pitch, float yaw)
Sets camera configuration like setLookingAtPoint(), but the point is given in map coordinates.
Qt3DRender::QCamera * camera() const
Returns camera that is being controlled.
Encapsulates camera pose in a 3D scene.
void setPitchAngle(float pitch)
Sets pitch angle in degrees.
void setCenterPoint(const QgsVector3D &point)
Sets center point (towards which point the camera is looking).
void setHeadingAngle(float heading)
Sets heading (yaw) angle in degrees.
void setDistanceFromCenterPoint(float distance)
Sets distance of the camera from the center point.
3D symbol that draws point cloud geometries as 3D objects using classification of the dataset.
void setCategoriesList(const QgsPointCloudCategoryList &categories)
Sets the list of categories of the classification.
void setAttribute(const QString &attribute)
Sets the attribute used to select the color of the point cloud.
3D symbol that draws point cloud geometries as 3D objects using color ramp shader.
void setAttribute(const QString &attribute)
Sets the attribute used to select the color of the point cloud.
void setColorRampShaderMinMax(double min, double max)
Sets the minimum and maximum values used when classifying colors in the color ramp shader.
void setColorRampShader(const QgsColorRampShader &colorRampShader)
Sets the color ramp shader used to render the point cloud.
Handles contrast enhancement and clipping.
Represents a coordinate reference system (CRS).
Contains information about the context in which a coordinate transform is executed.
Handles coordinate transforms between two coordinate systems.
void setBallparkTransformsAreAppropriate(bool appropriate)
Sets whether approximate "ballpark" results are appropriate for this coordinate transform.
QgsPointXY transform(const QgsPointXY &point, Qgis::TransformDirection direction=Qgis::TransformDirection::Forward) const
Transform the point from the source CRS to the destination CRS.
QgsRectangle transformBoundingBox(const QgsRectangle &rectangle, Qgis::TransformDirection direction=Qgis::TransformDirection::Forward, bool handle180Crossover=false) const
Transforms a rectangle from the source CRS to the destination CRS.
Custom exception class for Coordinate Reference System related exceptions.
int numInteriorRings() const
Returns the number of interior rings contained with the curve polygon.
bool addZValue(double zValue=0) override
Adds a z-dimension to the geometry, initialized to a preset value.
const QgsCurve * exteriorRing() const
Returns the curve polygon's exterior ring.
const QgsCurve * interiorRing(int i) const
Retrieves an interior ring from the curve polygon.
Abstract base class for curved geometry type.
Definition qgscurve.h:36
QgsRange which stores a range of double values.
Definition qgsrange.h:233
bool isInfinite() const
Returns true if the range consists of all possible values.
Definition qgsrange.h:287
Wrapper for iterator of features from vector data provider or vector layer.
bool nextFeature(QgsFeature &f)
Fetch next feature and stores in f, returns true on success.
Wraps a request for features to a vector layer (or directly its vector data provider).
The feature class encapsulates a single feature including its unique ID, geometry and a list of field...
Definition qgsfeature.h:58
QgsGeometry geometry
Definition qgsfeature.h:69
Base class for feedback objects to be used for cancellation of something running in a worker thread.
Definition qgsfeedback.h:44
bool isCanceled() const
Tells whether the operation has been canceled already.
Definition qgsfeedback.h:53
void setProgress(double progress)
Sets the current progress for the feedback object.
Definition qgsfeedback.h:61
A geometry is the spatial representation of a feature.
const QgsAbstractGeometry * constGet() const
Returns a non-modifiable (const) reference to the underlying abstract geometry primitive.
QgsAbstractGeometry::vertex_iterator vertices_begin() const
Returns STL-style iterator pointing to the first vertex of the geometry.
QgsAbstractGeometry::vertex_iterator vertices_end() const
Returns STL-style iterator pointing to the imaginary vertex after the last vertex of the geometry.
Line string geometry type, with support for z-dimension and m-values.
int nCoordinates() const override
Returns the number of nodes contained in the geometry.
double yAt(int index) const override
Returns the y-coordinate of the specified node in the line string.
void setZAt(int index, double z)
Sets the z-coordinate of the specified node in the line string.
double zAt(int index) const override
Returns the z-coordinate of the specified node in the line string.
double xAt(int index) const override
Returns the x-coordinate of the specified node in the line string.
Base class for all map layer types.
Definition qgsmaplayer.h:80
Off-screen 3D engine implementation.
void setSize(QSize s) override
Sets the size of the rendering area (in pixels).
void setRootEntity(Qt3DCore::QEntity *root) override
Sets root entity of the 3D scene.
Qt3DRender::QRenderSettings * renderSettings() override
Returns access to the engine's render settings (the frame graph can be accessed from here).
Basic shading material used for rendering based on the Phong shading model with three color component...
void setDiffuse(const QColor &diffuse)
Sets diffuse color component.
void setShininess(double shininess)
Sets shininess of the surface.
void setAmbient(const QColor &ambient)
Sets ambient color component.
void setSpecular(const QColor &specular)
Sets specular color component.
An RGB renderer for 2d visualisation of point clouds using embedded red, green and blue attributes.
double maximum() const
Returns the maximum value for attributes which will be used by the color ramp shader.
QgsColorRampShader colorRampShader() const
Returns the color ramp shader function used to visualize the attribute.
double minimum() const
Returns the minimum value for attributes which will be used by the color ramp shader.
QString attribute() const
Returns the attribute to use for the renderer.
Renders point clouds by a classification attribute.
QString attribute() const
Returns the attribute to use for the renderer.
QgsPointCloudCategoryList categories() const
Returns the classification categories used for rendering.
Abstract base class for 2d point cloud renderers.
virtual QString type() const =0
Returns the identifier of the renderer type.
An RGB renderer for 2d visualisation of point clouds using embedded red, green and blue attributes.
QString redAttribute() const
Returns the attribute to use for the red channel.
QString greenAttribute() const
Returns the attribute to use for the green channel.
const QgsContrastEnhancement * greenContrastEnhancement() const
Returns the contrast enhancement to use for the green channel.
QString blueAttribute() const
Returns the attribute to use for the blue channel.
const QgsContrastEnhancement * blueContrastEnhancement() const
Returns the contrast enhancement to use for the blue channel.
const QgsContrastEnhancement * redContrastEnhancement() const
Returns the contrast enhancement to use for the red channel.
Represents a 2D point.
Definition qgspointxy.h:60
void setY(double y)
Sets the y value of the point.
Definition qgspointxy.h:129
void set(double x, double y)
Sets the x and y value of the point.
Definition qgspointxy.h:136
double y
Definition qgspointxy.h:64
double x
Definition qgspointxy.h:63
void setX(double x)
Sets the x value of the point.
Definition qgspointxy.h:119
Point geometry type, with support for z-dimension and m-values.
Definition qgspoint.h:49
double z
Definition qgspoint.h:54
double x
Definition qgspoint.h:52
double y
Definition qgspoint.h:53
Polygon geometry type.
Definition qgspolygon.h:33
T lower() const
Returns the lower bound of the range.
Definition qgsrange.h:78
T upper() const
Returns the upper bound of the range.
Definition qgsrange.h:85
A representation of a ray in 3D.
Definition qgsray3d.h:31
QVector3D origin() const
Returns the origin of the ray.
Definition qgsray3d.h:44
QVector3D direction() const
Returns the direction of the ray see setDirection().
Definition qgsray3d.h:50
Responsible for defining parameters of the ray casting operations in 3D map canvases.
Contains the results of ray casting operations in a 3D map canvas.
void addLayerHits(QgsMapLayer *layer, const QList< QgsRayCastHit > &hits)
Adds all hits from layer to the result.
void addTerrainHits(const QList< QgsRayCastHit > &hits)
Adds all terrain hits to the result.
A rectangle specified with double values.
Q_INVOKABLE QString toString(int precision=16) const
Returns a string representation of form xmin,ymin : xmax,ymax Coordinates will be truncated to the sp...
double xMinimum
double yMinimum
double xMaximum
double yMaximum
3D symbol that draws point cloud geometries as 3D objects using RGB colors in the dataset.
void setBlueAttribute(const QString &attribute)
Sets the attribute to use for the blue channel.
void setGreenContrastEnhancement(QgsContrastEnhancement *enhancement SIP_TRANSFER)
Sets the contrast enhancement to use for the green channel.
void setGreenAttribute(const QString &attribute)
Sets the attribute to use for the green channel.
void setBlueContrastEnhancement(QgsContrastEnhancement *enhancement SIP_TRANSFER)
Sets the contrast enhancement to use for the blue channel.
void setRedContrastEnhancement(QgsContrastEnhancement *enhancement SIP_TRANSFER)
Sets the contrast enhancement to use for the red channel.
void setRedAttribute(const QString &attribute)
Sets the attribute to use for the red channel.
virtual float heightAt(double x, double y, const Qgs3DRenderContext &context) const
Returns height at (x,y) in map's CRS.
A 3D vector (similar to QVector3D) with the difference that it uses double precision instead of singl...
Definition qgsvector3d.h:30
double y() const
Returns Y coordinate.
Definition qgsvector3d.h:49
double z() const
Returns Z coordinate.
Definition qgsvector3d.h:51
void setZ(double z)
Sets Z coordinate.
Definition qgsvector3d.h:69
double distance(const QgsVector3D &other) const
Returns the distance with the other QgsVector3D.
static double dotProduct(const QgsVector3D &v1, const QgsVector3D &v2)
Returns the dot product of two vectors.
double x() const
Returns X coordinate.
Definition qgsvector3d.h:47
void normalize()
Normalizes the current vector in place.
static QgsVector3D crossProduct(const QgsVector3D &v1, const QgsVector3D &v2)
Returns the cross product of two vectors.
void set(double x, double y, double z)
Sets vector coordinates.
Definition qgsvector3d.h:72
Represents a vector layer which manages a vector based dataset.
Q_INVOKABLE Qgis::WkbType wkbType() const final
Returns the WKBType or WKBUnknown in case of error.
QgsFeatureIterator getFeatures(const QgsFeatureRequest &request=QgsFeatureRequest()) const final
Queries the layer for features specified in request.
Represent a 2-dimensional vector.
Definition qgsvector.h:31
double y() const
Returns the vector's y-component.
Definition qgsvector.h:153
QgsVector normalized() const
Returns the vector's normalized (or "unit") vector (ie same angle but length of 1....
Definition qgsvector.cpp:29
QgsVector perpVector() const
Returns the perpendicular vector to this vector (rotated 90 degrees counter-clockwise).
Definition qgsvector.h:161
double x() const
Returns the vector's x-component.
Definition qgsvector.h:144
static Q_INVOKABLE bool hasZ(Qgis::WkbType type)
Tests whether a WKB type contains the z-dimension.
#define BUILTIN_UNREACHABLE
Definition qgis.h:7208
Qt3DCore::QBuffer Qt3DQBuffer
T qgsgeometry_cast(QgsAbstractGeometry *geom)
#define QgsDebugMsgLevel(str, level)
Definition qgslogger.h:61
#define QgsDebugError(str)
Definition qgslogger.h:57
float pitch
Tilt of the camera in degrees (0 = looking from the top, 90 = looking from the side,...
float yaw
Horizontal rotation around the focal point in degrees.
QgsVector3D point
Point towards which the camera is looking in 3D map coords.
float dist
Distance of the camera from the focal point.