29#include <nlohmann/json.hpp>
34#include <QDomDocument>
59 mX.resize(
points.count() );
60 mY.resize(
points.count() );
61 double *x = mX.data();
62 double *y = mY.data();
67 mZ.resize(
points.count() );
72 mM.resize(
points.count() );
87QgsLineString::QgsLineString(
const QVector<double> &x,
const QVector<double> &y,
const QVector<double> &z,
const QVector<double> &m,
bool is25DType )
90 int pointCount = std::min( x.size(), y.size() );
91 if ( x.size() == pointCount )
97 mX = x.mid( 0, pointCount );
99 if ( y.size() == pointCount )
105 mY = y.mid( 0, pointCount );
107 if ( !z.isEmpty() && z.count() >= pointCount )
110 if ( z.size() == pointCount )
116 mZ = z.mid( 0, pointCount );
119 if ( !m.isEmpty() && m.count() >= pointCount )
122 if ( m.size() == pointCount )
128 mM = m.mid( 0, pointCount );
161 mX.reserve(
points.size() );
162 mY.reserve(
points.size() );
181static double cubicInterpolate(
double a,
double b,
182 double A,
double B,
double C,
double D )
184 return A * b * b * b + 3 * B * b * b * a + 3 * C * b * a * a + D * a * a * a;
193 x.resize( segments + 1 );
195 y.resize( segments + 1 );
197 double *
zData =
nullptr;
198 if ( start.
is3D() && end.
is3D() && controlPoint1.
is3D() && controlPoint2.
is3D() )
200 z.resize( segments + 1 );
204 double *
mData =
nullptr;
207 m.resize( segments + 1 );
211 double *
xData = x.data();
212 double *
yData = y.data();
213 const double step = 1.0 / segments;
216 for (
int i = 0; i < segments; i++, a += step, b -= step )
229 *
xData++ = cubicInterpolate( a, b, start.
x(), controlPoint1.
x(), controlPoint2.
x(), end.
x() );
230 *
yData++ = cubicInterpolate( a, b, start.
y(), controlPoint1.
y(), controlPoint2.
y(), end.
y() );
232 *
zData++ = cubicInterpolate( a, b, start.
z(), controlPoint1.
z(), controlPoint2.
z(), end.
z() );
234 *
mData++ = cubicInterpolate( a, b, start.
m(), controlPoint1.
m(), controlPoint2.
m(), end.
m() );
252 x.resize( polygon.count() );
253 y.resize( polygon.count() );
254 double *
xData = x.data();
255 double *
yData = y.data();
257 const QPointF *src = polygon.data();
258 for (
int i = 0 ; i < polygon.size(); ++ i )
290 const int size = mX.size();
294 const double *x = mX.constData();
295 const double *y = mY.constData();
296 const bool useZ =
is3D();
298 const double *z = useZ ? mZ.constData() :
nullptr;
299 const double *m = useM ? mM.constData() :
nullptr;
301 for (
int i = 0; i < size; ++i )
323 error = QObject::tr(
"LineString has less than 2 points and is not empty." );
334 bool res =
snapToGridPrivate( hSpacing, vSpacing, dSpacing, mSpacing, mX, mY, mZ, mM,
335 result->mX, result->mY, result->mZ, result->mM, removeRedundantPoints );
337 return result.release();
344 if ( mX.count() <= 2 )
347 double prevX = mX.at( 0 );
348 double prevY = mY.at( 0 );
350 bool useZ = hasZ && useZValues;
351 double prevZ = useZ ? mZ.at( 0 ) : 0;
353 int remaining = mX.count();
354 while ( i < remaining )
356 double currentX = mX.at( i );
357 double currentY = mY.at( i );
358 double currentZ = useZ ? mZ.at( i ) : 0;
395 if (
is3D() && closed )
396 closed &=
qgsDoubleNear( mZ.first(), mZ.last() ) || ( std::isnan( mZ.first() ) && std::isnan( mZ.last() ) );
411 const int nb = mX.size();
420 if ( rectangle.
contains( mX.at( 0 ), mY.at( 0 ) ) ||
421 rectangle.
contains( mX.at(
static_cast< int >( nb * 0.2 ) ), mY.at(
static_cast< int >( nb * 0.2 ) ) ) ||
422 rectangle.
contains( mX.at(
static_cast< int >( nb * 0.4 ) ), mY.at(
static_cast< int >( nb * 0.4 ) ) ) ||
423 rectangle.
contains( mX.at(
static_cast< int >( nb * 0.6 ) ), mY.at(
static_cast< int >( nb * 0.6 ) ) ) ||
424 rectangle.
contains( mX.at(
static_cast< int >( nb * 0.8 ) ), mY.at(
static_cast< int >( nb * 0.8 ) ) ) ||
425 rectangle.
contains( mX.at( nb - 1 ), mY.at( nb - 1 ) ) )
434 double xmin = std::numeric_limits<double>::max();
435 double ymin = std::numeric_limits<double>::max();
436 double xmax = -std::numeric_limits<double>::max();
437 double ymax = -std::numeric_limits<double>::max();
439 const double *x = mX.constData();
440 const double *y = mY.constData();
441 bool foundPointInRectangle =
false;
442 for (
int i = 0; i < nb; ++i )
444 const double px = *x++;
445 xmin = std::min( xmin, px );
446 xmax = std::max( xmax, px );
447 const double py = *y++;
448 ymin = std::min( ymin, py );
449 ymax = std::max( ymax, py );
451 if ( !foundPointInRectangle && rectangle.
contains( px, py ) )
453 foundPointInRectangle =
true;
469 if ( foundPointInRectangle )
494 const int nb = mX.size();
503 if ( box3d.
contains( mX.at( 0 ), mY.at( 0 ), mZ.at( 0 ) ) ||
504 box3d.
contains( mX.at(
static_cast< int >( nb * 0.2 ) ), mY.at(
static_cast< int >( nb * 0.2 ) ), mZ.at(
static_cast< int >( nb * 0.2 ) ) ) ||
505 box3d.
contains( mX.at(
static_cast< int >( nb * 0.4 ) ), mY.at(
static_cast< int >( nb * 0.4 ) ), mZ.at(
static_cast< int >( nb * 0.4 ) ) ) ||
506 box3d.
contains( mX.at(
static_cast< int >( nb * 0.6 ) ), mY.at(
static_cast< int >( nb * 0.6 ) ), mZ.at(
static_cast< int >( nb * 0.6 ) ) ) ||
507 box3d.
contains( mX.at(
static_cast< int >( nb * 0.8 ) ), mY.at(
static_cast< int >( nb * 0.8 ) ), mZ.at(
static_cast< int >( nb * 0.8 ) ) ) ||
508 box3d.
contains( mX.at( nb - 1 ), mY.at( nb - 1 ), mZ.at( nb - 1 ) ) )
517 double xmin = std::numeric_limits<double>::max();
518 double ymin = std::numeric_limits<double>::max();
519 double zmin = std::numeric_limits<double>::max();
520 double xmax = -std::numeric_limits<double>::max();
521 double ymax = -std::numeric_limits<double>::max();
522 double zmax = -std::numeric_limits<double>::max();
524 const double *x = mX.constData();
525 const double *y = mY.constData();
526 const double *z = mZ.constData();
527 bool foundPointInBox =
false;
528 for (
int i = 0; i < nb; ++i )
530 const double px = *x++;
531 xmin = std::min( xmin, px );
532 xmax = std::max( xmax, px );
533 const double py = *y++;
534 ymin = std::min( ymin, py );
535 ymax = std::max( ymax, py );
536 const double pz = *z++;
537 zmin = std::min( zmin, pz );
538 zmax = std::max( zmax, pz );
540 if ( !foundPointInBox && box3d.
contains( px, py, pz ) )
542 foundPointInBox =
true;
558 if ( foundPointInBox )
571 QVector< QgsVertexId > res;
572 if ( mX.count() <= 1 )
575 const double *x = mX.constData();
576 const double *y = mY.constData();
578 bool useZ = hasZ && useZValues;
579 const double *z = useZ ? mZ.constData() :
nullptr;
583 double prevZ = z ? *z++ : 0;
586 for (
int i = 1; i < mX.count(); ++i )
588 double currentX = *x++;
589 double currentY = *y++;
590 double currentZ = useZ ? *z++ : 0;
610 const int nb = mX.size();
613 const double *x = mX.constData();
614 const double *y = mY.constData();
615 QPointF *dest =
points.data();
616 for (
int i = 0; i < nb; ++i )
618 *dest++ = QPointF( *x++, *y++ );
624void simplifySection(
int i,
int j,
const double *x,
const double *y, std::vector< bool > &usePoint,
const double distanceToleranceSquared,
const double epsilon )
631 double maxDistanceSquared = -1.0;
636 for (
int k = i + 1; k < j; k++ )
639 x[k], y[k], x[i], y[i], x[j], y[j], mx, my, epsilon );
641 if ( distanceSquared > maxDistanceSquared )
643 maxDistanceSquared = distanceSquared;
647 if ( maxDistanceSquared <= distanceToleranceSquared )
649 for (
int k = i + 1; k < j; k++ )
656 simplifySection( i, maxIndex, x, y, usePoint, distanceToleranceSquared, epsilon );
657 simplifySection( maxIndex, j, x, y, usePoint, distanceToleranceSquared, epsilon );
670 const double distanceToleranceSquared = tolerance * tolerance;
671 const double *
xData = mX.constData();
672 const double *
yData = mY.constData();
673 const double *
zData = mZ.constData();
674 const double *
mData = mM.constData();
676 const int size = mX.size();
678 std::vector< bool > usePoint( size,
true );
680 constexpr double epsilon = 4 * std::numeric_limits<double>::epsilon();
683 QVector< double > newX;
684 newX.reserve( size );
685 QVector< double > newY;
686 newY.reserve( size );
688 const bool hasZ =
is3D();
690 QVector< double > newZ;
692 newZ.reserve( size );
693 QVector< double > newM;
695 newM.reserve( size );
697 for (
int i = 0, n = size; i < n; ++i )
699 if ( usePoint[i] || i == n - 1 )
701 newX.append(
xData[i ] );
702 newY.append(
yData[i ] );
704 newZ.append(
zData[i] );
706 newM.append(
mData[i] );
710 const bool simplifyRing =
isRing();
711 const int newSize = newX.size();
712 if ( simplifyRing && newSize > 3 )
717 newX[ newSize - 2], newY[ newSize - 2 ],
718 newX[ 1 ], newY[ 1], mx, my, epsilon );
720 if ( distanceSquared <= distanceToleranceSquared )
723 newX.last() = newX.first();
725 newY.last() = newY.first();
729 newZ.last() = newZ.first();
734 newM.last() = newM.first();
755 importVerticesFromWkb( wkbPtr );
766 auto result2D = std::minmax_element( mX.begin(), mX.end() );
767 const double xmin = *result2D.first;
768 const double xmax = *result2D.second;
769 result2D = std::minmax_element( mY.begin(), mY.end() );
770 const double ymin = *result2D.first;
771 const double ymax = *result2D.second;
773 double zmin = std::numeric_limits< double >::quiet_NaN();
774 double zmax = std::numeric_limits< double >::quiet_NaN();
778 auto resultZ = std::minmax_element( mZ.begin(), mZ.end() );
779 zmin = *resultZ.first;
780 zmax = *resultZ.second;
783 return QgsBox3D( xmin, ymin, zmin, xmax, ymax, zmax );
793 const int size = mX.size();
794 if ( index < 1 || index >= size - 1 )
797 const bool useZ =
is3D();
800 QVector<double> newX( size );
801 QVector<double> newY( size );
802 QVector<double> newZ( useZ ? size : 0 );
803 QVector<double> newM( useM ? size : 0 );
804 auto it = std::copy( mX.constBegin() + index, mX.constEnd() - 1, newX.begin() );
805 it = std::copy( mX.constBegin(), mX.constBegin() + index, it );
806 *it = *newX.constBegin();
807 mX = std::move( newX );
809 it = std::copy( mY.constBegin() + index, mY.constEnd() - 1, newY.begin() );
810 it = std::copy( mY.constBegin(), mY.constBegin() + index, it );
811 *it = *newY.constBegin();
812 mY = std::move( newY );
815 it = std::copy( mZ.constBegin() + index, mZ.constEnd() - 1, newZ.begin() );
816 it = std::copy( mZ.constBegin(), mZ.constBegin() + index, it );
817 *it = *newZ.constBegin();
818 mZ = std::move( newZ );
822 it = std::copy( mM.constBegin() + index, mM.constEnd() - 1, newM.begin() );
823 it = std::copy( mM.constBegin(), mM.constBegin() + index, it );
824 *it = *newM.constBegin();
825 mM = std::move( newM );
844 QString secondWithoutParentheses =
parts.second;
845 secondWithoutParentheses = secondWithoutParentheses.remove(
'(' ).remove(
')' ).simplified().remove(
' ' );
846 parts.second =
parts.second.remove(
'(' ).remove(
')' );
847 if ( (
parts.second.compare( QLatin1String(
"EMPTY" ), Qt::CaseInsensitive ) == 0 ) ||
848 secondWithoutParentheses.isEmpty() )
863 int binarySize =
sizeof( char ) +
sizeof( quint32 ) +
sizeof( quint32 );
874 wkb << static_cast<quint32>(
wkbType() );
892 wkt += QLatin1String(
"EMPTY" );
907 QDomElement elemLineString = doc.createElementNS( ns, QStringLiteral(
"LineString" ) );
910 return elemLineString;
914 return elemLineString;
922 QDomElement elemLineString = doc.createElementNS( ns, QStringLiteral(
"LineString" ) );
925 return elemLineString;
928 return elemLineString;
937 {
"type",
"LineString" },
947 kml.append( QLatin1String(
"<LinearRing>" ) );
951 kml.append( QLatin1String(
"<LineString>" ) );
954 kml.append( QLatin1String(
"<altitudeMode>" ) );
957 kml.append( QLatin1String(
"absolute" ) );
961 kml.append( QLatin1String(
"clampToGround" ) );
963 kml.append( QLatin1String(
"</altitudeMode>" ) );
964 kml.append( QLatin1String(
"<coordinates>" ) );
966 int nPoints = mX.size();
967 for (
int i = 0; i < nPoints; ++i )
971 kml.append( QLatin1String(
" " ) );
974 kml.append( QLatin1String(
"," ) );
978 kml.append( QLatin1String(
"," ) );
983 kml.append( QLatin1String(
",0" ) );
986 kml.append( QLatin1String(
"</coordinates>" ) );
989 kml.append( QLatin1String(
"</LinearRing>" ) );
993 kml.append( QLatin1String(
"</LineString>" ) );
1007 const int size = mX.size();
1011 const double *x = mX.constData();
1012 const double *y = mY.constData();
1015 double prevX = *x++;
1016 double prevY = *y++;
1018 for (
int i = 1; i < size; ++i )
1022 total += std::sqrt( dx * dx + dy * dy );
1032 const bool useZ =
is3D();
1035 const int size = mX.size();
1037 return std::make_tuple( std::make_unique< QgsLineString >(), std::make_unique< QgsLineString >() );
1039 index = std::clamp( index, 0, size - 1 );
1041 const int part1Size = index + 1;
1042 QVector< double > x1( part1Size );
1043 QVector< double > y1( part1Size );
1044 QVector< double > z1( useZ ? part1Size : 0 );
1045 QVector< double > m1( useM ? part1Size : 0 );
1047 const double *sourceX = mX.constData();
1048 const double *sourceY = mY.constData();
1049 const double *sourceZ = useZ ? mZ.constData() :
nullptr;
1050 const double *sourceM = useM ? mM.constData() :
nullptr;
1052 double *destX = x1.data();
1053 double *destY = y1.data();
1054 double *destZ = useZ ? z1.data() :
nullptr;
1055 double *destM = useM ? m1.data() :
nullptr;
1057 std::copy( sourceX, sourceX + part1Size, destX );
1058 std::copy( sourceY, sourceY + part1Size, destY );
1060 std::copy( sourceZ, sourceZ + part1Size, destZ );
1062 std::copy( sourceM, sourceM + part1Size, destM );
1064 const int part2Size = size - index;
1065 if ( part2Size < 2 )
1066 return std::make_tuple( std::make_unique< QgsLineString >( x1, y1, z1, m1 ), std::make_unique< QgsLineString >() );
1068 QVector< double > x2( part2Size );
1069 QVector< double > y2( part2Size );
1070 QVector< double > z2( useZ ? part2Size : 0 );
1071 QVector< double > m2( useM ? part2Size : 0 );
1074 destZ = useZ ? z2.data() :
nullptr;
1075 destM = useM ? m2.data() :
nullptr;
1076 std::copy( sourceX + index, sourceX + size, destX );
1077 std::copy( sourceY + index, sourceY + size, destY );
1079 std::copy( sourceZ + index, sourceZ + size, destZ );
1081 std::copy( sourceM + index, sourceM + size, destM );
1083 if ( part1Size < 2 )
1084 return std::make_tuple( std::make_unique< QgsLineString >(), std::make_unique< QgsLineString >( x2, y2, z2, m2 ) );
1086 return std::make_tuple( std::make_unique< QgsLineString >( x1, y1, z1, m1 ), std::make_unique< QgsLineString >( x2, y2, z2, m2 ) );
1094 const int size = mX.size();
1098 const double *x = mX.constData();
1099 const double *y = mY.constData();
1100 const double *z = mZ.constData();
1103 double prevX = *x++;
1104 double prevY = *y++;
1105 double prevZ = *z++;
1107 for (
int i = 1; i < size; ++i )
1112 total += std::sqrt( dx * dx + dy * dy + dz * dz );
1152 Q_UNUSED( tolerance )
1153 Q_UNUSED( toleranceType )
1169 if ( i < 0 || i >= mX.size() )
1174 double x = mX.at( i );
1175 double y = mY.at( i );
1176 double z = std::numeric_limits<double>::quiet_NaN();
1177 double m = std::numeric_limits<double>::quiet_NaN();
1195 else if ( hasZ && hasM )
1218 if ( index >= 0 && index < mX.size() )
1219 return mX.at( index );
1226 if ( index >= 0 && index < mY.size() )
1227 return mY.at( index );
1234 if ( index >= 0 && index < mX.size() )
1241 if ( index >= 0 && index < mY.size() )
1256 pts.reserve( nPoints );
1257 for (
int i = 0; i < nPoints; ++i )
1259 pts.push_back(
pointN( i ) );
1273 const bool hasZ =
static_cast< bool >( z );
1274 const bool hasM =
static_cast< bool >( m );
1295 double *destX = mX.data();
1296 double *destY = mY.data();
1297 double *destZ =
nullptr;
1307 double *destM =
nullptr;
1318 for (
size_t i = 0; i < size; ++i )
1345 bool hasZ = firstPt.
is3D();
1350 mX.resize(
points.size() );
1351 mY.resize(
points.size() );
1354 mZ.resize(
points.size() );
1362 mM.resize(
points.size() );
1369 for (
int i = 0; i <
points.size(); ++i )
1371 mX[i] =
points.at( i ).x();
1372 mY[i] =
points.at( i ).y();
1375 double z =
points.at( i ).z();
1376 mZ[i] = std::isnan( z ) ? 0 : z;
1380 double m =
points.at( i ).m();
1381 mM[i] = std::isnan( m ) ? 0 : m;
1434 mZ.insert( mZ.count(), mX.size() - mZ.size(), std::numeric_limits<double>::quiet_NaN() );
1447 mM.insert( mM.count(), mX.size() - mM.size(), std::numeric_limits<double>::quiet_NaN() );
1457 std::reverse( copy->mX.begin(), copy->mX.end() );
1458 std::reverse( copy->mY.begin(), copy->mY.end() );
1461 std::reverse( copy->mZ.begin(), copy->mZ.end() );
1465 std::reverse( copy->mM.begin(), copy->mM.end() );
1470void QgsLineString::visitPointsByRegularDistance(
const double distance,
const std::function<
bool (
double,
double,
double,
double,
double,
double,
double,
double,
double,
double,
double,
double )> &visitPoint )
const
1475 double distanceTraversed = 0;
1477 if ( totalPoints == 0 )
1480 const double *x = mX.constData();
1481 const double *y = mY.constData();
1482 const double *z =
is3D() ? mZ.constData() :
nullptr;
1483 const double *m =
isMeasure() ? mM.constData() :
nullptr;
1485 double prevX = *x++;
1486 double prevY = *y++;
1487 double prevZ = z ? *z++ : 0.0;
1488 double prevM = m ? *m++ : 0.0;
1492 visitPoint( prevX, prevY, prevZ, prevM, prevX, prevY, prevZ, prevM, prevX, prevY, prevZ, prevM );
1496 double pZ = std::numeric_limits<double>::quiet_NaN();
1497 double pM = std::numeric_limits<double>::quiet_NaN();
1498 double nextPointDistance = distance;
1499 for (
int i = 1; i < totalPoints; ++i )
1501 double thisX = *x++;
1502 double thisY = *y++;
1503 double thisZ = z ? *z++ : 0.0;
1504 double thisM = m ? *m++ : 0.0;
1510 const double distanceToPoint = std::min( nextPointDistance - distanceTraversed,
segmentLength );
1513 z ? &prevZ :
nullptr, z ? &thisZ :
nullptr, z ? &pZ :
nullptr,
1514 m ? &prevM :
nullptr, m ? &thisM :
nullptr, m ? &pM : nullptr );
1516 if ( !visitPoint( pX, pY, pZ, pM, prevX, prevY, prevZ, prevM, thisX, thisY, thisZ, thisM ) )
1519 nextPointDistance += distance;
1541 std::unique_ptr< QgsPoint > res;
1542 visitPointsByRegularDistance( distance, [ & ](
double x,
double y,
double z,
double m,
double,
double,
double,
double,
double,
double,
double,
double )->
bool
1544 res = std::make_unique< QgsPoint >( pointType, x, y, z, m );
1547 return res.release();
1552 return lineLocatePointByMPrivate( m, x, y, z, distanceFromStart, use3DDistance,
false );
1555bool QgsLineString::lineLocatePointByMPrivate(
double m,
double &x,
double &y,
double &z,
double &distanceFromStart,
bool use3DDistance,
bool haveInterpolatedM )
const
1560 distanceFromStart = 0;
1562 if ( totalPoints == 0 )
1565 const double *
xData = mX.constData();
1566 const double *
yData = mY.constData();
1567 const double *
mData = mM.constData();
1569 const double *
zData =
is3D() ? mZ.constData() :
nullptr;
1570 use3DDistance &=
static_cast< bool >(
zData );
1572 double prevX = *
xData++;
1573 double prevY = *
yData++;
1575 double prevM = *
mData++;
1578 while ( i < totalPoints )
1580 double thisX = *
xData++;
1581 double thisY = *
yData++;
1583 double thisM = *
mData++;
1587 if ( std::isnan( thisM ) )
1589 if ( haveInterpolatedM )
1593 std::unique_ptr< QgsLineString > interpolatedM(
interpolateM( use3DDistance ) );
1594 return interpolatedM->lineLocatePointByMPrivate( m, x, y, z, distanceFromStart, use3DDistance,
true );
1606 double totalLengthOfSegmentsWithConstantM = 0;
1607 for (
int j = 0; j < ( totalPoints - i ); ++j )
1617 distanceFromStart += totalLengthOfSegmentsWithConstantM / 2;
1627 const double delta = ( m - prevM ) / ( thisM - prevM );
1632 z = prevZ + ( thisZ - prevZ ) * delta;
1633 distanceFromStart += distanceToPoint;
1650 if ( startDistance < 0 && endDistance < 0 )
1653 endDistance = std::max( startDistance, endDistance );
1656 if ( totalPoints == 0 )
1659 QVector< QgsPoint > substringPoints;
1660 substringPoints.reserve( totalPoints );
1668 const double *x = mX.constData();
1669 const double *y = mY.constData();
1670 const double *z =
is3D() ? mZ.constData() :
nullptr;
1671 const double *m =
isMeasure() ? mM.constData() :
nullptr;
1673 double distanceTraversed = 0;
1674 double prevX = *x++;
1675 double prevY = *y++;
1676 double prevZ = z ? *z++ : 0.0;
1677 double prevM = m ? *m++ : 0.0;
1678 bool foundStart =
false;
1680 if ( startDistance < 0 )
1683 for (
int i = 1; i < totalPoints; ++i )
1685 double thisX = *x++;
1686 double thisY = *y++;
1687 double thisZ = z ? *z++ : 0.0;
1688 double thisM = m ? *m++ : 0.0;
1692 if ( distanceTraversed <= startDistance && startDistance < distanceTraversed +
segmentLength )
1695 const double distanceToStart = startDistance - distanceTraversed;
1696 double startX, startY;
1700 z ? &prevZ :
nullptr, z ? &thisZ :
nullptr, z ? &startZ :
nullptr,
1701 m ? &prevM :
nullptr, m ? &thisM :
nullptr, m ? &startM : nullptr );
1702 substringPoints <<
QgsPoint( pointType, startX, startY, startZ, startM );
1705 if ( foundStart && ( distanceTraversed +
segmentLength > endDistance ) )
1708 const double distanceToEnd = endDistance - distanceTraversed;
1713 z ? &prevZ :
nullptr, z ? &thisZ :
nullptr, z ? &endZ :
nullptr,
1714 m ? &prevM :
nullptr, m ? &thisM :
nullptr, m ? &endM : nullptr );
1715 substringPoints <<
QgsPoint( pointType, endX, endY, endZ, endM );
1717 else if ( foundStart )
1719 substringPoints <<
QgsPoint( pointType, thisX, thisY, thisZ, thisM );
1727 if ( distanceTraversed >= endDistance )
1732 if ( !foundStart &&
qgsDoubleNear( distanceTraversed, startDistance ) )
1734 substringPoints <<
QgsPoint( pointType, prevX, prevY, prevZ, prevM )
1735 <<
QgsPoint( pointType, prevX, prevY, prevZ, prevM );
1760 if ( path.isEmpty() || path.currentPosition() != QPointF( mX.at( 0 ), mY.at( 0 ) ) )
1762 path.moveTo( mX.at( 0 ), mY.at( 0 ) );
1765 for (
int i = 1; i < nPoints; ++i )
1767 path.lineTo( mX.at( i ), mY.at( i ) );
1780 return compoundCurve;
1785 if ( mX.size() < 2 || mY.size() < 2 )
1788 const bool extendStart = startDistance > 0;
1789 const bool extendEnd = endDistance > 0;
1794 const double currentLen = std::sqrt( std::pow( mX.at( 0 ) - mX.at( 1 ), 2 ) +
1795 std::pow( mY.at( 0 ) - mY.at( 1 ), 2 ) );
1796 const double newLen = currentLen + startDistance;
1797 mX[ 0 ] = mX.at( 1 ) + ( mX.at( 0 ) - mX.at( 1 ) ) / currentLen * newLen;
1798 mY[ 0 ] = mY.at( 1 ) + ( mY.at( 0 ) - mY.at( 1 ) ) / currentLen * newLen;
1803 const int last = mX.size() - 1;
1804 const double currentLen = std::sqrt( std::pow( mX.at( last ) - mX.at( last - 1 ), 2 ) +
1805 std::pow( mY.at( last ) - mY.at( last - 1 ), 2 ) );
1806 const double newLen = currentLen + endDistance;
1807 mX[ last ] = mX.at( last - 1 ) + ( mX.at( last ) - mX.at( last - 1 ) ) / currentLen * newLen;
1808 mY[ last ] = mY.at( last - 1 ) + ( mY.at( last ) - mY.at( last - 1 ) ) / currentLen * newLen;
1811 if ( extendStart || extendEnd )
1817 auto result = std::make_unique< QgsLineString >();
1819 return result.release();
1824 const QgsLineString *otherLine = qgsgeometry_cast<const QgsLineString *>( other );
1828 const int size = mX.size();
1829 const int otherSize = otherLine->mX.size();
1830 if ( size > otherSize )
1834 else if ( size < otherSize )
1839 if (
is3D() && !otherLine->
is3D() )
1841 else if ( !
is3D() && otherLine->
is3D() )
1843 const bool considerZ =
is3D();
1851 for (
int i = 0; i < size; i++ )
1853 const double x = mX[i];
1854 const double otherX = otherLine->mX[i];
1859 else if ( x > otherX )
1864 const double y = mY[i];
1865 const double otherY = otherLine->mY[i];
1870 else if ( y > otherY )
1877 const double z = mZ[i];
1878 const double otherZ = otherLine->mZ[i];
1884 else if ( z > otherZ )
1892 const double m = mM[i];
1893 const double otherM = otherLine->mM[i];
1899 else if ( m > otherM )
1910 return QStringLiteral(
"LineString" );
1926 double *zArray =
nullptr;
1932 std::unique_ptr< double[] > dummyZ;
1933 if ( !hasZ || !transformZ )
1935 dummyZ.reset(
new double[nPoints]() );
1936 zArray = dummyZ.get();
1951 double *x = mX.data();
1952 double *y = mY.data();
1953 double *z = hasZ ? mZ.data() :
nullptr;
1954 double *m = hasM ? mM.data() :
nullptr;
1955 for (
int i = 0; i < nPoints; ++i )
1958 t.map( *x, *y, &xOut, &yOut );
1963 *z = *z * zScale + zTranslate;
1968 *m = *m * mScale + mTranslate;
1983 if ( position.
vertex < 0 || position.
vertex > mX.size() )
1993 mX.insert( position.
vertex, vertex.
x() );
1994 mY.insert( position.
vertex, vertex.
y() );
1997 mZ.insert( position.
vertex, vertex.
z() );
2001 mM.insert( position.
vertex, vertex.
m() );
2009 if ( position.
vertex < 0 || position.
vertex >= mX.size() )
2013 mX[position.
vertex] = newPos.
x();
2014 mY[position.
vertex] = newPos.
y();
2017 mZ[position.
vertex] = newPos.
z();
2021 mM[position.
vertex] = newPos.
m();
2029 if ( position.
vertex >= mX.size() || position.
vertex < 0 )
2034 mX.remove( position.
vertex );
2035 mY.remove( position.
vertex );
2038 mZ.remove( position.
vertex );
2042 mM.remove( position.
vertex );
2067 mX.append( pt.
x() );
2068 mY.append( pt.
y() );
2071 mZ.append( pt.
z() );
2075 mM.append( pt.
m() );
2082 double sqrDist = std::numeric_limits<double>::max();
2083 double leftOfDist = std::numeric_limits<double>::max();
2085 double prevLeftOfX = 0.0;
2086 double prevLeftOfY = 0.0;
2087 double testDist = 0;
2088 double segmentPtX, segmentPtY;
2093 const int size = mX.size();
2094 if ( size == 0 || size == 1 )
2100 const double *
xData = mX.constData();
2101 const double *
yData = mY.constData();
2102 for (
int i = 1; i < size; ++i )
2104 double prevX =
xData[ i - 1 ];
2105 double prevY =
yData[ i - 1 ];
2106 double currentX =
xData[ i ];
2107 double currentY =
yData[ i ];
2109 if ( testDist < sqrDist )
2112 segmentPt.
setX( segmentPtX );
2113 segmentPt.
setY( segmentPtY );
2114 vertexAfter.
part = 0;
2115 vertexAfter.
ring = 0;
2126 if (
qgsDoubleNear( testDist, leftOfDist ) && left != prevLeftOf && prevLeftOf != 0 )
2138 prevLeftOf = *leftOf;
2139 leftOfDist = testDist;
2140 prevLeftOfX = prevX;
2141 prevLeftOfY = prevY;
2143 else if ( testDist < leftOfDist )
2146 leftOfDist = testDist;
2178 return QgsPoint( mX.at( 0 ), mY.at( 0 ) );
2180 double totalLineLength = 0.0;
2181 double prevX = mX.at( 0 );
2182 double prevY = mY.at( 0 );
2188 double currentX = mX.at( i );
2189 double currentY = mY.at( i );
2190 double segmentLength = std::sqrt( std::pow( currentX - prevX, 2.0 ) +
2191 std::pow( currentY - prevY, 2.0 ) );
2205 return QgsPoint( mX.at( 0 ), mY.at( 0 ) );
2207 return QgsPoint( sumX / totalLineLength, sumY / totalLineLength );
2226 const int maxIndex = mX.size();
2233 const double *x = mX.constData();
2234 const double *y = mY.constData();
2235 double prevX = *x++;
2236 double prevY = *y++;
2237 for (
int i = 1; i < maxIndex; ++i )
2239 mSummedUpArea += prevX * ( *y - prevY ) - prevY * ( *x - prevX );
2249void QgsLineString::importVerticesFromWkb(
const QgsConstWkbPtr &wkb )
2255 mX.resize( nVertices );
2256 mY.resize( nVertices );
2257 hasZ ? mZ.resize( nVertices ) : mZ.clear();
2258 hasM ? mM.resize( nVertices ) : mM.clear();
2259 double *x = mX.data();
2260 double *y = mY.data();
2261 double *m = hasM ? mM.data() :
nullptr;
2262 double *z = hasZ ? mZ.data() :
nullptr;
2263 for (
int i = 0; i < nVertices; ++i )
2296 if ( mX.count() < 2 )
2306 double previousX = mX.at(
numPoints() - 2 );
2307 double previousY = mY.at(
numPoints() - 2 );
2308 double currentX = mX.at( 0 );
2309 double currentY = mY.at( 0 );
2310 double afterX = mX.at( 1 );
2311 double afterY = mY.at( 1 );
2314 else if ( vertex.
vertex == 0 )
2327 double previousX = mX.at( vertex.
vertex - 1 );
2328 double previousY = mY.at( vertex.
vertex - 1 );
2329 double currentX = mX.at( vertex.
vertex );
2330 double currentY = mY.at( vertex.
vertex );
2331 double afterX = mX.at( vertex.
vertex + 1 );
2332 double afterY = mY.at( vertex.
vertex + 1 );
2339 if ( startVertex.
vertex < 0 || startVertex.
vertex >= mX.count() - 1 )
2342 double dx = mX.at( startVertex.
vertex + 1 ) - mX.at( startVertex.
vertex );
2343 double dy = mY.at( startVertex.
vertex + 1 ) - mY.at( startVertex.
vertex );
2344 return std::sqrt( dx * dx + dy * dy );
2369 mZ.reserve( nPoints );
2370 for (
int i = 0; i < nPoints; ++i )
2400 mM.reserve( nPoints );
2401 for (
int i = 0; i < nPoints; ++i )
2432 std::swap( mX, mY );
2446 addZValue( std::numeric_limits<double>::quiet_NaN() );
2463 int size = mX.size();
2465 double *srcX = mX.data();
2466 double *srcY = mY.data();
2467 double *srcM = hasM ? mM.data() :
nullptr;
2468 double *srcZ = hasZ ? mZ.data() :
nullptr;
2471 for (
int i = 0; i < size; ++i )
2475 double z = hasZ ? *srcZ : std::numeric_limits<double>::quiet_NaN();
2476 double m = hasM ? *srcM : std::numeric_limits<double>::quiet_NaN();
2504 int size = mX.size();
2506 double *srcX = mX.data();
2507 double *srcY = mY.data();
2508 double *srcM = hasM ? mM.data() :
nullptr;
2509 double *srcZ = hasZ ? mZ.data() :
nullptr;
2511 double *destX = srcX;
2512 double *destY = srcY;
2513 double *destM = srcM;
2514 double *destZ = srcZ;
2516 int filteredPoints = 0;
2517 for (
int i = 0; i < size; ++i )
2521 double z = hasZ ? *srcZ++ : std::numeric_limits<double>::quiet_NaN();
2522 double m = hasM ? *srcM++ : std::numeric_limits<double>::quiet_NaN();
2524 if ( filter(
QgsPoint( x, y, z, m ) ) )
2536 mX.resize( filteredPoints );
2537 mY.resize( filteredPoints );
2539 mZ.resize( filteredPoints );
2541 mM.resize( filteredPoints );
2550 int size = mX.size();
2552 double *srcX = mX.data();
2553 double *srcY = mY.data();
2554 double *srcM = hasM ? mM.data() :
nullptr;
2555 double *srcZ = hasZ ? mZ.data() :
nullptr;
2557 for (
int i = 0; i < size; ++i )
2561 double z = hasZ ? *srcZ : std::numeric_limits<double>::quiet_NaN();
2562 double m = hasM ? *srcM : std::numeric_limits<double>::quiet_NaN();
2578 std::unique_ptr< QgsLineString > cloned(
clone() );
2582 return cloned.release();
2585 if (
isEmpty() || ( nbpoints < 2 ) )
2587 return cloned.release();
2590 const double range = end - start;
2591 double lineLength =
length();
2592 double lengthSoFar = 0.0;
2595 double *mOut = cloned->mM.data();
2597 for (
int i = 1; i < nbpoints ; ++i )
2600 if ( lineLength > 0.0 )
2601 *mOut++ = start + range * lengthSoFar / lineLength;
2602 else if ( lineLength == 0.0 && nbpoints > 1 )
2603 *mOut++ = start + range * i / ( nbpoints - 1 );
2608 return cloned.release();
2617 if ( totalPoints < 2 )
2620 const double *
xData = mX.constData();
2621 const double *
yData = mY.constData();
2622 const double *
mData = mM.constData();
2623 const double *
zData =
is3D() ? mZ.constData() :
nullptr;
2624 use3DDistance &=
static_cast< bool >(
zData );
2626 QVector< double > xOut( totalPoints );
2627 QVector< double > yOut( totalPoints );
2628 QVector< double > mOut( totalPoints );
2629 QVector< double > zOut(
static_cast< bool >(
zData ) ? totalPoints : 0 );
2631 double *xOutData = xOut.data();
2632 double *yOutData = yOut.data();
2633 double *mOutData = mOut.data();
2634 double *zOutData =
static_cast< bool >(
zData ) ? zOut.data() :
nullptr;
2637 double currentSegmentLength = 0;
2638 double lastValidM = std::numeric_limits< double >::quiet_NaN();
2639 double prevX = *
xData;
2640 double prevY = *
yData;
2642 while ( i < totalPoints )
2644 double thisX = *
xData++;
2645 double thisY = *
yData++;
2647 double thisM = *
mData++;
2649 currentSegmentLength = use3DDistance
2653 if ( !std::isnan( thisM ) )
2655 *xOutData++ = thisX;
2656 *yOutData++ = thisY;
2657 *mOutData++ = thisM;
2659 *zOutData++ = thisZ;
2666 double scanAheadM = thisM;
2667 while ( i + j + 1 < totalPoints && std::isnan( scanAheadM ) )
2669 scanAheadM =
mData[ j ];
2672 if ( std::isnan( scanAheadM ) )
2677 *xOutData++ = thisX;
2678 *yOutData++ = thisY;
2679 *mOutData++ = scanAheadM;
2681 *zOutData++ = thisZ;
2682 for ( ; i < j; ++i )
2686 *xOutData++ = thisX;
2687 *yOutData++ = thisY;
2688 *mOutData++ = scanAheadM;
2691 *zOutData++ = *
zData++;
2693 lastValidM = scanAheadM;
2699 double scanAheadX = thisX;
2700 double scanAheadY = thisY;
2701 double scanAheadZ = thisZ;
2702 double distanceToNextValidM = currentSegmentLength;
2703 std::vector< double > scanAheadSegmentLengths;
2704 scanAheadSegmentLengths.emplace_back( currentSegmentLength );
2706 double nextValidM = std::numeric_limits< double >::quiet_NaN();
2707 while ( i + j < totalPoints - 1 )
2709 double nextScanAheadX =
xData[j];
2710 double nextScanAheadY =
yData[j];
2711 double nextScanAheadZ =
zData ?
zData[j] : 0;
2712 double nextScanAheadM =
mData[ j ];
2713 const double scanAheadSegmentLength = use3DDistance
2716 scanAheadSegmentLengths.emplace_back( scanAheadSegmentLength );
2717 distanceToNextValidM += scanAheadSegmentLength;
2719 if ( !std::isnan( nextScanAheadM ) )
2721 nextValidM = nextScanAheadM;
2725 scanAheadX = nextScanAheadX;
2726 scanAheadY = nextScanAheadY;
2727 scanAheadZ = nextScanAheadZ;
2731 if ( std::isnan( nextValidM ) )
2734 *xOutData++ = thisX;
2735 *yOutData++ = thisY;
2736 *mOutData++ = lastValidM;
2738 *zOutData++ = thisZ;
2740 for ( ; i < totalPoints; ++i )
2742 *xOutData++ = *
xData++;
2743 *yOutData++ = *
yData++;
2744 *mOutData++ = lastValidM;
2746 *zOutData++ = *
zData++;
2753 const double delta = ( nextValidM - lastValidM ) / distanceToNextValidM;
2754 *xOutData++ = thisX;
2755 *yOutData++ = thisY;
2756 *mOutData++ = lastValidM + delta * scanAheadSegmentLengths[0];
2757 double totalScanAheadLength = scanAheadSegmentLengths[0];
2759 *zOutData++ = thisZ;
2760 for (
int k = 1; k <= j; ++i, ++k )
2764 *xOutData++ = thisX;
2765 *yOutData++ = thisY;
2766 totalScanAheadLength += scanAheadSegmentLengths[k];
2767 *mOutData++ = lastValidM + delta * totalScanAheadLength;
2770 *zOutData++ = *
zData++;
2772 lastValidM = nextValidM;
QFlags< GeometryValidityFlag > GeometryValidityFlags
Geometry validity flags.
VertexType
Types of vertex.
@ Segment
The actual start or end point of a segment.
WkbType
The WKB type describes the number of dimensions a geometry has.
@ LineString25D
LineString25D.
@ LineStringM
LineStringM.
@ LineStringZM
LineStringZM.
@ LineStringZ
LineStringZ.
TransformDirection
Indicates the direction (forward or inverse) of a transform.
Abstract base class for all geometries.
SegmentationToleranceType
Segmentation tolerance as maximum angle or maximum difference between approximation and circle.
virtual bool convertTo(Qgis::WkbType type)
Converts the geometry to a specified type.
bool isMeasure() const
Returns true if the geometry contains m values.
QFlags< WkbFlag > WkbFlags
bool is3D() const
Returns true if the geometry is 3D and contains a z-value.
AxisOrder
Axis order for GML generation.
QString wktTypeStr() const
Returns the WKT type string of the geometry.
Qgis::WkbType wkbType() const
Returns the WKB type of the geometry.
void setZMTypeFromSubGeometry(const QgsAbstractGeometry *subggeom, Qgis::WkbType baseGeomType)
Updates the geometry type based on whether sub geometries contain z or m values.
virtual bool boundingBoxIntersects(const QgsRectangle &rectangle) const
Returns true if the bounding box of this geometry intersects with a rectangle.
QgsGeometryConstPartIterator parts() const
Returns Java-style iterator for traversal of parts of the geometry.
static endian_t endian()
Returns whether this machine uses big or little endian.
A 3-dimensional box composed of x, y, z coordinates.
bool intersects(const QgsBox3D &other) const
Returns true if box intersects with another box.
bool contains(const QgsBox3D &other) const
Returns true when box contains other box.
QgsRectangle toRectangle() const
Converts the box to a 2D rectangle.
bool isNull() const
Test if the box is null (holding no spatial information).
Compound curve geometry type.
void addCurve(QgsCurve *c, bool extendPrevious=false)
Adds a curve to the geometry (takes ownership).
Qgis::WkbType readHeader() const
readHeader
void clearCache() const override
Clears any cached parameters associated with the geometry, e.g., bounding boxes.
bool mHasCachedSummedUpArea
virtual bool isRing() const
Returns true if the curve is a ring.
bool isValid(QString &error, Qgis::GeometryValidityFlags flags=Qgis::GeometryValidityFlags()) const override
Checks validity of the geometry, and returns true if the geometry is valid.
bool snapToGridPrivate(double hSpacing, double vSpacing, double dSpacing, double mSpacing, const QVector< double > &srcX, const QVector< double > &srcY, const QVector< double > &srcZ, const QVector< double > &srcM, QVector< double > &outX, QVector< double > &outY, QVector< double > &outZ, QVector< double > &outM, bool removeRedundantPoints) const
Helper function for QgsCurve subclasses to snap to grids.
QgsBox3D mBoundingBox
Cached bounding box.
Base class for feedback objects to be used for cancellation of something running in a worker thread.
bool isCanceled() const
Tells whether the operation has been canceled already.
Convenience functions for geometry utils.
static void pointOnLineWithDistance(double x1, double y1, double x2, double y2, double distance, double &x, double &y, double *z1=nullptr, double *z2=nullptr, double *z=nullptr, double *m1=nullptr, double *m2=nullptr, double *m=nullptr)
Calculates the point a specified distance from (x1, y1) toward a second point (x2,...
static double distance2D(double x1, double y1, double x2, double y2)
Returns the 2D distance between (x1, y1) and (x2, y2).
static double lineAngle(double x1, double y1, double x2, double y2)
Calculates the direction of line joining two points in radians, clockwise from the north direction.
static double averageAngle(double x1, double y1, double x2, double y2, double x3, double y3)
Calculates the average angle (in radians) between the two linear segments from (x1,...
static double distance3D(double x1, double y1, double z1, double x2, double y2, double z2)
Returns the 3D distance between (x1, y1, z1) and (x2, y2, z2).
static double sqrDistToLine(double ptX, double ptY, double x1, double y1, double x2, double y2, double &minDistX, double &minDistY, double epsilon)
Returns the squared distance between a point and a line.
static int leftOfLine(const double x, const double y, const double x1, const double y1, const double x2, const double y2)
Returns a value < 0 if the point (x, y) is left of the line from (x1, y1) -> (x2, y2).
static json pointsToJson(const QgsPointSequence &points, int precision)
Returns coordinates as json object.
static void pointsToWKB(QgsWkbPtr &wkb, const QgsPointSequence &points, bool is3D, bool isMeasure, QgsAbstractGeometry::WkbFlags flags)
Returns a LinearRing { uint32 numPoints; Point points[numPoints]; }.
static QPair< Qgis::WkbType, QString > wktReadBlock(const QString &wkt)
Parses a WKT block of the format "TYPE( contents )" and returns a pair of geometry type to contents (...
static QgsPointSequence pointsFromWKT(const QString &wktCoordinateList, bool is3D, bool isMeasure)
Returns a list of points contained in a WKT string.
static QDomElement pointsToGML2(const QgsPointSequence &points, QDomDocument &doc, int precision, const QString &ns, QgsAbstractGeometry::AxisOrder axisOrder=QgsAbstractGeometry::AxisOrder::XY)
Returns a gml::coordinates DOM element.
static QDomElement pointsToGML3(const QgsPointSequence &points, QDomDocument &doc, int precision, const QString &ns, bool is3D, QgsAbstractGeometry::AxisOrder axisOrder=QgsAbstractGeometry::AxisOrder::XY)
Returns a gml::posList DOM element.
static QString pointsToWKT(const QgsPointSequence &points, int precision, bool is3D, bool isMeasure)
Returns a WKT coordinate list.
Represents a single 2D line segment, consisting of a 2D start and end vertex only.
Line string geometry type, with support for z-dimension and m-values.
double segmentLength(QgsVertexId startVertex) const override
Returns the length of the segment of the geometry which begins at startVertex.
bool fromWkt(const QString &wkt) override
Sets the geometry from a WKT string.
bool pointAt(int node, QgsPoint &point, Qgis::VertexType &type) const override
Returns the point and vertex id of a point within the curve.
bool isClosed() const override
Returns true if the curve is closed.
void swapXy() override
Swaps the x and y coordinates from the geometry.
const double * yData() const
Returns a const pointer to the y vertex data.
bool isValid(QString &error, Qgis::GeometryValidityFlags flags=Qgis::GeometryValidityFlags()) const override
Checks validity of the geometry, and returns true if the geometry is valid.
const double * xData() const
Returns a const pointer to the x vertex data.
bool moveVertex(QgsVertexId position, const QgsPoint &newPos) override
Moves a vertex within the geometry.
double length() const override
Returns the planar, 2-dimensional length of the geometry.
double length3D() const
Returns the length in 3D world of the line string.
void points(QgsPointSequence &pt) const override
Returns a list of points within the curve.
QgsLineString * simplifyByDistance(double tolerance) const override
Simplifies the geometry by applying the Douglas Peucker simplification by distance algorithm.
int dimension() const override
Returns the inherent dimension of the geometry.
void sumUpArea(double &sum) const override
Calculates the shoelace/triangle formula sum for the points in the linestring.
void clear() override
Clears the geometry, ie reset it to a null geometry.
const double * zData() const
Returns a const pointer to the z vertex data, or nullptr if the linestring does not have z values.
bool fromWkb(QgsConstWkbPtr &wkb) override
Sets the geometry from a WKB string.
bool addZValue(double zValue=0) override
Adds a z-dimension to the geometry, initialized to a preset value.
QgsPoint startPoint() const override
Returns the starting point of the curve.
void transform(const QgsCoordinateTransform &ct, Qgis::TransformDirection d=Qgis::TransformDirection::Forward, bool transformZ=false) override
Transforms the geometry using a coordinate transform.
QgsLineString * curveToLine(double tolerance=M_PI_2/90, SegmentationToleranceType toleranceType=MaximumAngle) const override
Returns a new line string geometry corresponding to a segmentized approximation of the curve.
QgsLineString * interpolateM(bool use3DDistance=true) const
Returns a copy of this line with all missing (NaN) m values interpolated from m values of surrounding...
bool isEmpty() const override
Returns true if the geometry is empty.
static QgsLineString * fromBezierCurve(const QgsPoint &start, const QgsPoint &controlPoint1, const QgsPoint &controlPoint2, const QgsPoint &end, int segments=30)
Returns a new linestring created by segmentizing the bezier curve between start and end,...
bool dropZValue() override
Drops any z-dimensions which exist in the geometry.
int numPoints() const override
Returns the number of points in the curve.
QgsPoint pointN(int i) const
Returns the specified point from inside the line string.
void drawAsPolygon(QPainter &p) const override
Draws the curve as a polygon on the specified QPainter.
int nCoordinates() const override
Returns the number of nodes contained in the geometry.
QgsLineString()
Constructor for an empty linestring geometry.
void draw(QPainter &p) const override
Draws the geometry using the specified QPainter.
QString asKml(int precision=17) const override
Returns a KML representation of the geometry.
int wkbSize(QgsAbstractGeometry::WkbFlags flags=QgsAbstractGeometry::WkbFlags()) const override
Returns the length of the QByteArray returned by asWkb()
void setPoints(size_t size, const double *x, const double *y, const double *z=nullptr, const double *m=nullptr)
Resets the line string to match the specified point data.
QgsPoint centroid() const override
Returns the centroid of the geometry.
QDomElement asGml3(QDomDocument &doc, int precision=17, const QString &ns="gml", QgsAbstractGeometry::AxisOrder axisOrder=QgsAbstractGeometry::AxisOrder::XY) const override
Returns a GML3 representation of the geometry.
QPolygonF asQPolygonF() const override
Returns a QPolygonF representing the points.
bool removeDuplicateNodes(double epsilon=4 *std::numeric_limits< double >::epsilon(), bool useZValues=false) override
Removes duplicate nodes from the geometry, wherever removing the nodes does not result in a degenerat...
void scroll(int firstVertexIndex) final
Scrolls the curve vertices so that they start with the vertex at the given index.
bool boundingBoxIntersects(const QgsRectangle &rectangle) const override
Returns true if the bounding box of this geometry intersects with a rectangle.
QString geometryType() const override
Returns a unique string representing the geometry type.
QgsLineString * measuredLine(double start, double end) const
Re-write the measure ordinate (or add one, if it isn't already there) interpolating the measure betwe...
double yAt(int index) const override
Returns the y-coordinate of the specified node in the line string.
QgsPoint endPoint() const override
Returns the end point of the curve.
void setYAt(int index, double y)
Sets the y-coordinate of the specified node in the line string.
QDomElement asGml2(QDomDocument &doc, int precision=17, const QString &ns="gml", QgsAbstractGeometry::AxisOrder axisOrder=QgsAbstractGeometry::AxisOrder::XY) const override
Returns a GML2 representation of the geometry.
QgsLineString * reversed() const override
Returns a reversed copy of the curve, where the direction of the curve has been flipped.
QString asWkt(int precision=17) const override
Returns a WKT representation of the geometry.
static QgsLineString * fromQPolygonF(const QPolygonF &polygon)
Returns a new linestring from a QPolygonF polygon input.
void close()
Closes the line string by appending the first point to the end of the line, if it is not already clos...
bool addMValue(double mValue=0) override
Adds a measure to the geometry, initialized to a preset value.
int indexOf(const QgsPoint &point) const final
Returns the index of the first vertex matching the given point, or -1 if a matching vertex is not fou...
double vertexAngle(QgsVertexId vertex) const override
Returns approximate angle at a vertex.
void extend(double startDistance, double endDistance)
Extends the line geometry by extrapolating out the start or end of the line by a specified distance.
QgsCompoundCurve * toCurveType() const override
Returns the geometry converted to the more generic curve type QgsCompoundCurve.
void append(const QgsLineString *line)
Appends the contents of another line string to the end of this line string.
QgsLineString * curveSubstring(double startDistance, double endDistance) const override
Returns a new curve representing a substring of this curve.
QgsBox3D calculateBoundingBox3D() const override
Calculates the minimal 3D bounding box for the geometry.
std::tuple< std::unique_ptr< QgsCurve >, std::unique_ptr< QgsCurve > > splitCurveAtVertex(int index) const final
Splits the curve at the specified vertex index, returning two curves which represent the portion of t...
void addToPainterPath(QPainterPath &path) const override
Adds a curve to a painter path.
bool lineLocatePointByM(double m, double &x, double &y, double &z, double &distanceFromStart, bool use3DDistance=true) const
Attempts to locate a point on the linestring by m value.
void visitPointsByRegularDistance(double distance, const std::function< bool(double x, double y, double z, double m, double startSegmentX, double startSegmentY, double startSegmentZ, double startSegmentM, double endSegmentX, double endSegmentY, double endSegmentZ, double endSegmentM) > &visitPoint) const
Visits regular points along the linestring, spaced by distance.
void setXAt(int index, double x)
Sets the x-coordinate of the specified node in the line string.
bool deleteVertex(QgsVertexId position) override
Deletes a vertex within the geometry.
double closestSegment(const QgsPoint &pt, QgsPoint &segmentPt, QgsVertexId &vertexAfter, int *leftOf=nullptr, double epsilon=4 *std::numeric_limits< double >::epsilon()) const override
Searches for the closest segment of the geometry to a given point.
QVector< QgsVertexId > collectDuplicateNodes(double epsilon=4 *std::numeric_limits< double >::epsilon(), bool useZValues=false) const
Returns a list of any duplicate nodes contained in the geometry, within the specified tolerance.
bool insertVertex(QgsVertexId position, const QgsPoint &vertex) override
Inserts a vertex into the geometry.
const double * mData() const
Returns a const pointer to the m vertex data, or nullptr if the linestring does not have m values.
void addVertex(const QgsPoint &pt)
Adds a new vertex to the end of the line string.
QgsLineString * clone() const override
Clones the geometry by performing a deep copy.
int compareToSameClass(const QgsAbstractGeometry *other) const final
Compares to an other geometry of the same class, and returns a integer for sorting of the two geometr...
bool dropMValue() override
Drops any measure values which exist in the geometry.
Q_DECL_DEPRECATED QgsBox3D calculateBoundingBox3d() const
Calculates the minimal 3D bounding box for the geometry.
json asJsonObject(int precision=17) const override
Returns a json object representation of the geometry.
void filterVertices(const std::function< bool(const QgsPoint &) > &filter) override
Filters the vertices from the geometry in place, removing any which do not return true for the filter...
QByteArray asWkb(QgsAbstractGeometry::WkbFlags flags=QgsAbstractGeometry::WkbFlags()) const override
Returns a WKB representation of the geometry.
void transformVertices(const std::function< QgsPoint(const QgsPoint &) > &transform) override
Transforms the vertices from the geometry in place, applying the transform function to every vertex.
QgsLineString * createEmptyWithSameType() const override
Creates a new geometry with the same class and same WKB type as the original and transfers ownership.
bool convertTo(Qgis::WkbType type) override
Converts the geometry to a specified type.
bool isClosed2D() const override
Returns true if the curve is closed.
double xAt(int index) const override
Returns the x-coordinate of the specified node in the line string.
QgsPoint * interpolatePoint(double distance) const override
Returns an interpolated point on the curve at the specified distance.
QgsLineString * snappedToGrid(double hSpacing, double vSpacing, double dSpacing=0, double mSpacing=0, bool removeRedundantPoints=false) const override
Makes a new geometry with all the points or vertices snapped to the closest point of the grid.
A class to represent a 2D point.
Point geometry type, with support for z-dimension and m-values.
void setY(double y)
Sets the point's y-coordinate.
void setX(double x)
Sets the point's x-coordinate.
A rectangle specified with double values.
bool contains(const QgsRectangle &rect) const
Returns true when rectangle contains other rectangle.
static Qgis::WkbType dropM(Qgis::WkbType type)
Drops the m dimension (if present) for a WKB type and returns the new type.
static Qgis::WkbType zmType(Qgis::WkbType type, bool hasZ, bool hasM)
Returns the modified input geometry type according to hasZ / hasM.
static Qgis::WkbType dropZ(Qgis::WkbType type)
Drops the z dimension (if present) for a WKB type and returns the new type.
static Qgis::WkbType addM(Qgis::WkbType type)
Adds the m dimension to a WKB type and returns the new type.
static Qgis::WkbType addZ(Qgis::WkbType type)
Adds the z dimension to a WKB type and returns the new type.
static bool hasZ(Qgis::WkbType type)
Tests whether a WKB type contains the z-dimension.
static bool hasM(Qgis::WkbType type)
Tests whether a WKB type contains m values.
static Qgis::WkbType flatType(Qgis::WkbType type)
Returns the flat type for a WKB type.
QString qgsDoubleToString(double a, int precision=17)
Returns a string representation of a double.
bool qgsDoubleNear(double a, double b, double epsilon=4 *std::numeric_limits< double >::epsilon())
Compare two doubles (but allow some difference)
QVector< QgsPoint > QgsPointSequence
void simplifySection(int i, int j, const double *x, const double *y, std::vector< bool > &usePoint, const double distanceToleranceSquared, const double epsilon)
QLineF segment(int index, QRectF rect, double radius)
double distance2D(const QgsPolylineXY &coords)
Utility class for identifying a unique vertex within a geometry.