27using namespace Qt::StringLiterals;
31QString QgsNearestNeighbourAnalysisAlgorithm::name()
const
33 return u
"nearestneighbouranalysis"_s;
36QString QgsNearestNeighbourAnalysisAlgorithm::displayName()
const
38 return QObject::tr(
"Nearest neighbour analysis" );
41QStringList QgsNearestNeighbourAnalysisAlgorithm::tags()
const
43 return QObject::tr(
"point,node,vertex,nearest,neighbour,distance" ).split(
',' );
46QString QgsNearestNeighbourAnalysisAlgorithm::group()
const
48 return QObject::tr(
"Vector analysis" );
51QString QgsNearestNeighbourAnalysisAlgorithm::groupId()
const
53 return u
"vectoranalysis"_s;
56QString QgsNearestNeighbourAnalysisAlgorithm::shortHelpString()
const
58 return QObject::tr(
"This algorithm performs nearest neighbor analysis for a point layer.\n\n"
59 "The output describes how the data are distributed (clustered, randomly or distributed).\n\n"
60 "Output is generated as an HTML file with the computed statistical values." );
63QString QgsNearestNeighbourAnalysisAlgorithm::shortDescription()
const
65 return QObject::tr(
"Performs nearest neighbor analysis for a point layer." );
68QString QgsNearestNeighbourAnalysisAlgorithm::svgIconPath()
const
73QIcon QgsNearestNeighbourAnalysisAlgorithm::icon()
const
83QgsNearestNeighbourAnalysisAlgorithm *QgsNearestNeighbourAnalysisAlgorithm::createInstance()
const
85 return new QgsNearestNeighbourAnalysisAlgorithm();
88void QgsNearestNeighbourAnalysisAlgorithm::initAlgorithm(
const QVariantMap & )
91 addParameter(
new QgsProcessingParameterFileDestination( u
"OUTPUT_HTML_FILE"_s, QObject::tr(
"Nearest neighbour" ), QObject::tr(
"HTML files (*.html *.HTML)" ), QVariant(),
true ) );
101 std::unique_ptr<QgsProcessingFeatureSource> source( parameterAsSource( parameters, u
"INPUT"_s, context ) );
105 const QString outputFile = parameterAsFileOutput( parameters, u
"OUTPUT_HTML_FILE"_s, context );
112 const double step = source->featureCount() ? 100.0 / source->featureCount() : 1;
117 double sumDist = 0.0;
118 const double area = source->sourceExtent().width() * source->sourceExtent().height();
143 const long long count = source->featureCount() > 0 ? source->featureCount() : 1;
144 const double observedDistance = sumDist / count;
145 const double expectedDistance = 0.5 / std::sqrt( count / area );
146 const double nnIndex = observedDistance / expectedDistance;
147 const double se = 0.26136 / std::sqrt( std::pow( count, 2 ) / area );
148 const double zScore = ( observedDistance - expectedDistance ) / se;
151 outputs.insert( u
"OBSERVED_MD"_s, observedDistance );
152 outputs.insert( u
"EXPECTED_MD"_s, expectedDistance );
153 outputs.insert( u
"NN_INDEX"_s, nnIndex );
154 outputs.insert( u
"POINT_COUNT"_s, count );
155 outputs.insert( u
"Z_SCORE"_s, zScore );
157 if ( !outputFile.isEmpty() )
159 QFile file( outputFile );
160 if ( file.open( QIODevice::WriteOnly | QIODevice::Truncate ) )
162 QTextStream out( &file );
163 out << u
"<html><head><meta http-equiv=\"Content-Type\" content=\"text/html;charset=utf-8\"/></head><body>\n"_s;
164 out << QObject::tr(
"<p>Observed mean distance: %1</p>\n" ).arg( observedDistance, 0,
'f', 11 );
165 out << QObject::tr(
"<p>Expected mean distance: %1</p>\n" ).arg( expectedDistance, 0,
'f', 11 );
166 out << QObject::tr(
"<p>Nearest neighbour index: %1</p>\n" ).arg( nnIndex, 0,
'f', 11 );
167 out << QObject::tr(
"<p>Number of points: %1</p>\n" ).arg( count );
168 out << QObject::tr(
"<p>Z-Score: %1</p>\n" ).arg( zScore, 0,
'f', 11 );
169 out << u
"</body></html>"_s;
171 outputs.insert( u
"OUTPUT_HTML_FILE"_s, outputFile );
@ VectorPoint
Vector point layers.
@ RespectsEllipsoid
Algorithm respects the context's ellipsoid settings, and uses ellipsoidal based measurements.
QFlags< ProcessingAlgorithmDocumentationFlag > ProcessingAlgorithmDocumentationFlags
Flags describing algorithm behavior for documentation purposes.
static QIcon getThemeIcon(const QString &name, const QColor &fillColor=QColor(), const QColor &strokeColor=QColor())
Helper to get a theme icon.
static QString iconPath(const QString &iconFile)
Returns path to the desired icon file.
Custom exception class for Coordinate Reference System related exceptions.
A general purpose distance and area calculator, capable of performing ellipsoid based calculations.
double measureLine(const QVector< QgsPointXY > &points) const
Measures the length of a line with multiple segments.
void setSourceCrs(const QgsCoordinateReferenceSystem &crs, const QgsCoordinateTransformContext &context)
Sets source spatial reference system crs.
bool setEllipsoid(const QString &ellipsoid)
Sets the ellipsoid by its acronym.
Wrapper for iterator of features from vector data provider or vector layer.
bool nextFeature(QgsFeature &f)
Fetch next feature and stores in f, returns true on success.
Wraps a request for features to a vector layer (or directly its vector data provider).
The feature class encapsulates a single feature including its unique ID, geometry and a list of field...
bool isCanceled() const
Tells whether the operation has been canceled already.
void setProgress(double progress)
Sets the current progress for the feedback object.
QgsPointXY asPoint() const
Returns the contents of the geometry as a 2-dimensional point.
Contains information about the context in which a processing algorithm is executed.
QgsCoordinateTransformContext transformContext() const
Returns the coordinate transform context.
QString ellipsoid() const
Returns the ellipsoid to use for distance and area calculations.
Custom exception class for processing related exceptions.
Base class for providing feedback from a processing algorithm.
A numeric output for processing algorithms.
An input feature source (such as vector layers) parameter for processing algorithms.
A generic file based destination parameter, for specifying the destination path for a file (non-map l...
A spatial index for QgsFeature objects.
@ FlagStoreFeatureGeometries
Indicates that the spatial index should also store feature geometries. This requires more memory,...
qint64 QgsFeatureId
64 bit feature ids negative numbers are used for uncommitted/newly added features