20#include <unordered_set>
26using namespace Qt::StringLiterals;
30QString QgsDbscanClusteringAlgorithm::name()
const
32 return u
"dbscanclustering"_s;
35QString QgsDbscanClusteringAlgorithm::displayName()
const
37 return QObject::tr(
"DBSCAN clustering" );
40QString QgsDbscanClusteringAlgorithm::shortDescription()
const
42 return QObject::tr(
"Clusters point features using a density based scan algorithm." );
45QStringList QgsDbscanClusteringAlgorithm::tags()
const
47 return QObject::tr(
"clustering,clusters,density,based,points,distance" ).split(
',' );
50QString QgsDbscanClusteringAlgorithm::group()
const
52 return QObject::tr(
"Vector analysis" );
55QString QgsDbscanClusteringAlgorithm::groupId()
const
57 return u
"vectoranalysis"_s;
60void QgsDbscanClusteringAlgorithm::initAlgorithm(
const QVariantMap & )
64 addParameter(
new QgsProcessingParameterDistance( u
"EPS"_s, QObject::tr(
"Maximum distance between clustered points" ), 1, u
"INPUT"_s,
false, 0 ) );
66 auto dbscanStarParam = std::make_unique<QgsProcessingParameterBoolean>( u
"DBSCAN*"_s, QObject::tr(
"Treat border points as noise (DBSCAN*)" ),
false );
68 addParameter( dbscanStarParam.release() );
70 auto fieldNameParam = std::make_unique<QgsProcessingParameterString>( u
"FIELD_NAME"_s, QObject::tr(
"Cluster field name" ), u
"CLUSTER_ID"_s );
72 addParameter( fieldNameParam.release() );
73 auto sizeFieldNameParam = std::make_unique<QgsProcessingParameterString>( u
"SIZE_FIELD_NAME"_s, QObject::tr(
"Cluster size field name" ), u
"CLUSTER_SIZE"_s );
75 addParameter( sizeFieldNameParam.release() );
82QString QgsDbscanClusteringAlgorithm::shortHelpString()
const
84 return QObject::tr(
"This algorithm clusters point features based on a 2D implementation of Density-based spatial clustering of applications with noise (DBSCAN) algorithm.\n\n"
85 "The algorithm requires two parameters, a minimum cluster size (“minPts”), and the maximum distance allowed between clustered points (“eps”)." );
88QgsDbscanClusteringAlgorithm *QgsDbscanClusteringAlgorithm::createInstance()
const
90 return new QgsDbscanClusteringAlgorithm();
93struct KDBushDataEqualById
95 bool operator()(
const QgsSpatialIndexKDBushData &a,
const QgsSpatialIndexKDBushData &b )
const
101struct KDBushDataHashById
103 std::size_t operator()(
const QgsSpatialIndexKDBushData &a )
const
105 return std::hash<QgsFeatureId> {}( a.
id );
111 std::unique_ptr<QgsProcessingFeatureSource> source( parameterAsSource( parameters, u
"INPUT"_s, context ) );
115 const std::size_t minSize =
static_cast<std::size_t
>( parameterAsInt( parameters, u
"MIN_SIZE"_s, context ) );
116 const double eps1 = parameterAsDouble( parameters, u
"EPS"_s, context );
117 const double eps2 = parameterAsDouble( parameters, u
"EPS2"_s, context );
118 const bool borderPointsAreNoise = parameterAsBoolean( parameters, u
"DBSCAN*"_s, context );
120 QgsFields outputFields = source->fields();
122 const QString clusterFieldName = parameterAsString( parameters, u
"FIELD_NAME"_s, context );
123 newFields.
append(
QgsField( clusterFieldName, QMetaType::Type::Int ) );
124 const QString clusterSizeFieldName = parameterAsString( parameters, u
"SIZE_FIELD_NAME"_s, context );
125 newFields.
append(
QgsField( clusterSizeFieldName, QMetaType::Type::Int ) );
129 std::unique_ptr<QgsFeatureSink> sink( parameterAsSink( parameters, u
"OUTPUT"_s, context, dest, outputFields, source->wkbType(), source->sourceCrs() ) );
135 std::unordered_map<QgsFeatureId, QDateTime> idToDateTime;
136 const QString dateTimeFieldName = parameterAsString( parameters, u
"DATETIME_FIELD"_s, context );
137 int dateTimefieldIndex = -1;
138 if ( !dateTimeFieldName.isEmpty() )
140 dateTimefieldIndex = source->fields().lookupField( dateTimeFieldName );
141 if ( dateTimefieldIndex == -1 )
152 feedback->
pushInfo( QObject::tr(
"Building spatial index" ) );
155 if ( dateTimefieldIndex >= 0 )
156 idToDateTime[ feature.
id() ] = feature.
attributes().at( dateTimefieldIndex ).toDateTime();
157 return true; }, feedback );
160 return QVariantMap();
163 feedback->
pushInfo( QObject::tr(
"Analysing clusters" ) );
164 std::unordered_map<QgsFeatureId, int> idToCluster;
165 idToCluster.reserve( index.size() );
166 const long featureCount = source->featureCount();
168 stdbscan( minSize, eps1, eps2, borderPointsAreNoise, featureCount, features, index, idToCluster, idToDateTime, feedback );
171 std::unordered_map<int, int> clusterSize;
172 std::for_each( idToCluster.begin(), idToCluster.end(), [&clusterSize]( std::pair<QgsFeatureId, int> idCluster ) { clusterSize[idCluster.second]++; } );
175 const double writeStep = featureCount > 0 ? 10.0 / featureCount : 1;
176 features = source->getFeatures();
189 const auto cluster = idToCluster.find( feat.
id() );
190 if ( cluster != idToCluster.end() )
192 attr << cluster->second << clusterSize[cluster->second];
196 attr << QVariant() << QVariant();
206 outputs.insert( u
"OUTPUT"_s, dest );
207 outputs.insert( u
"NUM_CLUSTERS"_s,
static_cast<unsigned int>( clusterSize.size() ) );
211void QgsDbscanClusteringAlgorithm::stdbscan(
const std::size_t minSize,
const double eps1,
const double eps2,
const bool borderPointsAreNoise,
const long featureCount,
QgsFeatureIterator features,
QgsSpatialIndexKDBush &index, std::unordered_map<QgsFeatureId, int> &idToCluster, std::unordered_map<QgsFeatureId, QDateTime> &idToDateTime,
QgsProcessingFeedback *feedback )
213 const double step = featureCount > 0 ? 90.0 / featureCount : 1;
215 std::unordered_set<QgsFeatureId> visited;
216 visited.reserve( index.
size() );
220 int clusterCount = 0;
235 if ( visited.find( feat.
id() ) != visited.end() )
252 if ( !idToDateTime.empty() && !idToDateTime[feat.
id()].isValid() )
260 std::unordered_set<QgsSpatialIndexKDBushData, KDBushDataHashById, KDBushDataEqualById> within;
265 if ( idToDateTime.empty() || ( idToDateTime[data.id].isValid() && std::abs( idToDateTime[pointId].msecsTo( idToDateTime[data.id] ) ) <= eps2 ) )
266 within.insert( data );
268 if ( within.size() < minSize )
271 visited.insert( feat.
id() );
281 idToCluster[feat.
id()] = clusterCount;
284 while ( !within.empty() )
292 within.erase( within.begin() );
294 if ( visited.find( j.
id ) != visited.end() )
300 visited.insert( j.
id );
306 std::unordered_set<QgsSpatialIndexKDBushData, KDBushDataHashById, KDBushDataEqualById> within2;
308 if ( idToDateTime.empty() || ( idToDateTime[data.id].isValid() && std::abs( idToDateTime[point2Id].msecsTo( idToDateTime[data.id] ) ) <= eps2 ) )
309 within2.insert( data );
312 if ( within2.size() >= minSize )
315 std::copy_if( within2.begin(), within2.end(), std::inserter( within, within.end() ), [&visited](
const QgsSpatialIndexKDBushData &needle ) {
316 return visited.find( needle.id ) == visited.end();
319 if ( !borderPointsAreNoise || within2.size() >= minSize )
321 idToCluster[j.
id] = clusterCount;
@ VectorPoint
Vector point layers.
@ Advanced
Parameter is an advanced parameter which should be hidden from users by default.
Wrapper for iterator of features from vector data provider or vector layer.
bool nextFeature(QgsFeature &f)
Fetch next feature and stores in f, returns true on success.
Wraps a request for features to a vector layer (or directly its vector data provider).
QgsFeatureRequest & setSubsetOfAttributes(const QgsAttributeList &attrs)
Set a subset of attributes that will be fetched.
QgsFeatureRequest & setNoAttributes()
Set that no attributes will be fetched.
@ FastInsert
Use faster inserts, at the cost of updating the passed features to reflect changes made at the provid...
The feature class encapsulates a single feature including its unique ID, geometry and a list of field...
void setAttributes(const QgsAttributes &attrs)
Sets the feature's attributes.
bool hasGeometry() const
Returns true if the feature has an associated geometry.
bool isCanceled() const
Tells whether the operation has been canceled already.
void setProgress(double progress)
Sets the current progress for the feedback object.
Encapsulate a field in an attribute table or data source.
Container of fields for a vector layer.
bool append(const QgsField &field, Qgis::FieldOrigin origin=Qgis::FieldOrigin::Provider, int originIndex=-1)
Appends a field.
const QgsAbstractGeometry * constGet() const
Returns a non-modifiable (const) reference to the underlying abstract geometry primitive.
Qgis::WkbType wkbType() const
Returns type of the geometry as a WKB type (point / linestring / polygon etc.).
Contains information about the context in which a processing algorithm is executed.
Custom exception class for processing related exceptions.
Base class for providing feedback from a processing algorithm.
virtual void pushInfo(const QString &info)
Pushes a general informational message from the algorithm.
virtual void reportError(const QString &error, bool fatalError=false)
Reports that the algorithm encountered an error while executing.
A numeric output for processing algorithms.
A double numeric parameter for distance values.
A feature sink output for processing algorithms.
An input feature source (such as vector layers) parameter for processing algorithms.
A numeric parameter for processing algorithms.
static QgsFields combineFields(const QgsFields &fieldsA, const QgsFields &fieldsB, const QString &fieldsBPrefix=QString())
Combines two field lists, avoiding duplicate field names (in a case-insensitive manner).
A container for data stored inside a QgsSpatialIndexKDBush index.
QgsFeatureId id
Feature ID.
QgsPointXY point() const
Returns the indexed point.
A very fast static spatial index for 2D points based on a flat KD-tree.
qgssize size() const
Returns the size of the index, i.e.
QList< QgsSpatialIndexKDBushData > within(const QgsPointXY &point, double radius) const
Returns the list of features which are within the given search radius of point.
static Q_INVOKABLE QString displayString(Qgis::WkbType type)
Returns a non-translated display string type for a WKB type, e.g., the geometry name used in WKT geom...
static Qgis::WkbType flatType(Qgis::WkbType type)
Returns the flat type for a WKB type.
T qgsgeometry_cast(QgsAbstractGeometry *geom)
QList< int > QgsAttributeList