QGIS API Documentation  3.6.0-Noosa (5873452)
qgscircle.cpp
Go to the documentation of this file.
1 /***************************************************************************
2  qgscircle.cpp
3  --------------
4  begin : March 2017
5  copyright : (C) 2017 by Loîc Bartoletti
6  email : lbartoletti at tuxfamily dot org
7  ***************************************************************************/
8 
9 /***************************************************************************
10  * *
11  * This program is free software; you can redistribute it and/or modify *
12  * it under the terms of the GNU General Public License as published by *
13  * the Free Software Foundation; either version 2 of the License, or *
14  * (at your option) any later version. *
15  * *
16  ***************************************************************************/
17 
18 #include "qgscircle.h"
19 #include "qgslinestring.h"
20 #include "qgsgeometryutils.h"
21 #include "qgstriangle.h"
22 
23 #include <memory>
24 
26  QgsEllipse( QgsPoint(), 0.0, 0.0, 0.0 )
27 {
28 
29 }
30 
31 QgsCircle::QgsCircle( const QgsPoint &center, double radius, double azimuth ) :
32  QgsEllipse( center, radius, radius, azimuth )
33 {
34 
35 }
36 
38 {
40  double azimuth = QgsGeometryUtils::lineAngle( pt1.x(), pt1.y(), pt2.x(), pt2.y() ) * 180.0 / M_PI;
41  double radius = pt1.distance( pt2 ) / 2.0;
42 
44 
45  return QgsCircle( center, radius, azimuth );
46 }
47 
48 static bool isPerpendicular( const QgsPoint &pt1, const QgsPoint &pt2, const QgsPoint &pt3, double epsilon )
49 {
50  // check the given point are perpendicular to x or y axis
51 
52  double yDelta_a = pt2.y() - pt1.y();
53  double xDelta_a = pt2.x() - pt1.x();
54  double yDelta_b = pt3.y() - pt2.y();
55  double xDelta_b = pt3.x() - pt2.x();
56 
57  if ( ( std::fabs( xDelta_a ) <= epsilon ) && ( std::fabs( yDelta_b ) <= epsilon ) )
58  {
59  return false;
60  }
61 
62  if ( std::fabs( yDelta_a ) <= epsilon )
63  {
64  return true;
65  }
66  else if ( std::fabs( yDelta_b ) <= epsilon )
67  {
68  return true;
69  }
70  else if ( std::fabs( xDelta_a ) <= epsilon )
71  {
72  return true;
73  }
74  else if ( std::fabs( xDelta_b ) <= epsilon )
75  {
76  return true;
77  }
78 
79  return false;
80 
81 }
82 
83 QgsCircle QgsCircle::from3Points( const QgsPoint &pt1, const QgsPoint &pt2, const QgsPoint &pt3, double epsilon )
84 {
85  QgsPoint p1, p2, p3;
86 
87  if ( !isPerpendicular( pt1, pt2, pt3, epsilon ) )
88  {
89  p1 = pt1;
90  p2 = pt2;
91  p3 = pt3;
92  }
93  else if ( !isPerpendicular( pt1, pt3, pt2, epsilon ) )
94  {
95  p1 = pt1;
96  p2 = pt3;
97  p3 = pt2;
98  }
99  else if ( !isPerpendicular( pt2, pt1, pt3, epsilon ) )
100  {
101  p1 = pt2;
102  p2 = pt1;
103  p3 = pt3;
104  }
105  else if ( !isPerpendicular( pt2, pt3, pt1, epsilon ) )
106  {
107  p1 = pt2;
108  p2 = pt3;
109  p3 = pt1;
110  }
111  else if ( !isPerpendicular( pt3, pt2, pt1, epsilon ) )
112  {
113  p1 = pt3;
114  p2 = pt2;
115  p3 = pt1;
116  }
117  else if ( !isPerpendicular( pt3, pt1, pt2, epsilon ) )
118  {
119  p1 = pt3;
120  p2 = pt1;
121  p3 = pt2;
122  }
123  else
124  {
125  return QgsCircle();
126  }
128  double radius = -0.0;
129  // Paul Bourke's algorithm
130  double yDelta_a = p2.y() - p1.y();
131  double xDelta_a = p2.x() - p1.x();
132  double yDelta_b = p3.y() - p2.y();
133  double xDelta_b = p3.x() - p2.x();
134 
135  if ( qgsDoubleNear( xDelta_a, 0.0, epsilon ) || qgsDoubleNear( xDelta_b, 0.0, epsilon ) )
136  {
137  return QgsCircle();
138  }
139 
140  double aSlope = yDelta_a / xDelta_a;
141  double bSlope = yDelta_b / xDelta_b;
142 
143  // set z coordinate for center
144  QgsGeometryUtils::setZValueFromPoints( QgsPointSequence() << p1 << p2 << p3, center );
145 
146  if ( ( std::fabs( xDelta_a ) <= epsilon ) && ( std::fabs( yDelta_b ) <= epsilon ) )
147  {
148  center.setX( 0.5 * ( p2.x() + p3.x() ) );
149  center.setY( 0.5 * ( p1.y() + p2.y() ) );
150  radius = center.distance( pt1 );
151 
152  return QgsCircle( center, radius );
153  }
154 
155  if ( std::fabs( aSlope - bSlope ) <= epsilon )
156  {
157  return QgsCircle();
158  }
159 
160  center.setX(
161  ( aSlope * bSlope * ( p1.y() - p3.y() ) +
162  bSlope * ( p1.x() + p2.x() ) -
163  aSlope * ( p2.x() + p3.x() ) ) /
164  ( 2.0 * ( bSlope - aSlope ) )
165  );
166  center.setY(
167  -1.0 * ( center.x() - ( p1.x() + p2.x() ) / 2.0 ) /
168  aSlope + ( p1.y() + p2.y() ) / 2.0
169  );
170 
171  radius = center.distance( p1 );
172 
173  return QgsCircle( center, radius );
174 }
175 
177 {
178  return QgsCircle( center, diameter / 2.0, azimuth );
179 }
180 
182 {
183  double azimuth = QgsGeometryUtils::lineAngle( center.x(), center.y(), pt1.x(), pt1.y() ) * 180.0 / M_PI;
184 
185  QgsPoint centerPt( center );
186  QgsGeometryUtils::setZValueFromPoints( QgsPointSequence() << center << pt1, centerPt );
187 
188  return QgsCircle( centerPt, centerPt.distance( pt1 ), azimuth );
189 }
190 
191 QgsCircle QgsCircle::from3Tangents( const QgsPoint &pt1_tg1, const QgsPoint &pt2_tg1, const QgsPoint &pt1_tg2, const QgsPoint &pt2_tg2, const QgsPoint &pt1_tg3, const QgsPoint &pt2_tg3, double epsilon )
192 {
193  QgsPoint p1, p2, p3;
194  bool isIntersect = false;
195  QgsGeometryUtils::segmentIntersection( pt1_tg1, pt2_tg1, pt1_tg2, pt2_tg2, p1, isIntersect, epsilon );
196  if ( !isIntersect )
197  return QgsCircle();
198  QgsGeometryUtils::segmentIntersection( pt1_tg1, pt2_tg1, pt1_tg3, pt2_tg3, p2, isIntersect, epsilon );
199  if ( !isIntersect )
200  return QgsCircle();
201  QgsGeometryUtils::segmentIntersection( pt1_tg2, pt2_tg2, pt1_tg3, pt2_tg3, p3, isIntersect, epsilon );
202  if ( !isIntersect )
203  return QgsCircle();
204 
205  if ( p1.is3D() )
206  {
207  p1.convertTo( QgsWkbTypes::dropZ( p1.wkbType() ) );
208  }
209 
210  if ( p2.is3D() )
211  {
212  p2.convertTo( QgsWkbTypes::dropZ( p2.wkbType() ) );
213  }
214 
215  if ( p3.is3D() )
216  {
217  p3.convertTo( QgsWkbTypes::dropZ( p3.wkbType() ) );
218  }
219 
220  return QgsTriangle( p1, p2, p3 ).inscribedCircle();
221 }
222 
223 QgsCircle QgsCircle::minimalCircleFrom3Points( const QgsPoint &pt1, const QgsPoint &pt2, const QgsPoint &pt3, double epsilon )
224 {
225  double l1 = pt2.distance( pt3 );
226  double l2 = pt3.distance( pt1 );
227  double l3 = pt1.distance( pt2 );
228 
229  if ( ( l1 * l1 ) - ( l2 * l2 + l3 * l3 ) >= epsilon )
230  return QgsCircle().from2Points( pt2, pt3 );
231  else if ( ( l2 * l2 ) - ( l1 * l1 + l3 * l3 ) >= epsilon )
232  return QgsCircle().from2Points( pt3, pt1 );
233  else if ( ( l3 * l3 ) - ( l1 * l1 + l2 * l2 ) >= epsilon )
234  return QgsCircle().from2Points( pt1, pt2 );
235  else
236  return QgsCircle().from3Points( pt1, pt2, pt3, epsilon );
237 }
238 
239 int QgsCircle::intersections( const QgsCircle &other, QgsPoint &intersection1, QgsPoint &intersection2, bool useZ ) const
240 {
241  if ( useZ && mCenter.is3D() && other.center().is3D() && !qgsDoubleNear( mCenter.z(), other.center().z() ) )
242  return 0;
243 
244  QgsPointXY int1, int2;
245 
247  QgsPointXY( other.center() ), other.radius(),
248  int1, int2 );
249  if ( res == 0 )
250  return 0;
251 
252  intersection1 = QgsPoint( int1 );
253  intersection2 = QgsPoint( int2 );
254  if ( useZ && mCenter.is3D() )
255  {
256  intersection1.addZValue( mCenter.z() );
257  intersection2.addZValue( mCenter.z() );
258  }
259  return res;
260 }
261 
262 bool QgsCircle::tangentToPoint( const QgsPointXY &p, QgsPointXY &pt1, QgsPointXY &pt2 ) const
263 {
265 }
266 
267 int QgsCircle::outerTangents( const QgsCircle &other, QgsPointXY &line1P1, QgsPointXY &line1P2, QgsPointXY &line2P1, QgsPointXY &line2P2 ) const
268 {
270  QgsPointXY( other.center() ), other.radius(), line1P1, line1P2, line2P1, line2P2 );
271 }
272 
273 int QgsCircle::innerTangents( const QgsCircle &other, QgsPointXY &line1P1, QgsPointXY &line1P2, QgsPointXY &line2P1, QgsPointXY &line2P2 ) const
274 {
276  QgsPointXY( other.center() ), other.radius(), line1P1, line1P2, line2P1, line2P2 );
277 }
278 
280 {
281  double delta_x = std::fabs( pt1.x() - pt2.x() );
282  double delta_y = std::fabs( pt1.x() - pt2.y() );
283  if ( !qgsDoubleNear( delta_x, delta_y ) )
284  {
285  return QgsCircle();
286  }
287 
289  QgsGeometryUtils::setZValueFromPoints( QgsPointSequence() << pt1 << pt2, center );
290 
291  return QgsCircle( center, delta_x / 2.0, 0 );
292 }
293 
294 double QgsCircle::area() const
295 {
296  return M_PI * mSemiMajorAxis * mSemiMajorAxis;
297 }
298 
299 double QgsCircle::perimeter() const
300 {
301  return 2.0 * M_PI * mSemiMajorAxis;
302 }
303 
305 {
306  mSemiMajorAxis = std::fabs( semiMajorAxis );
308 }
309 
311 {
312  mSemiMajorAxis = std::fabs( semiMinorAxis );
314 }
315 
316 QVector<QgsPoint> QgsCircle::northQuadrant() const
317 {
318  QVector<QgsPoint> quad;
319  quad.append( QgsPoint( mCenter.x(), mCenter.y() + mSemiMajorAxis, mCenter.z() ) );
320  quad.append( QgsPoint( mCenter.x() + mSemiMajorAxis, mCenter.y(), mCenter.z() ) );
321  quad.append( QgsPoint( mCenter.x(), mCenter.y() - mSemiMajorAxis, mCenter.z() ) );
322  quad.append( QgsPoint( mCenter.x() - mSemiMajorAxis, mCenter.y(), mCenter.z() ) );
323 
324  return quad;
325 }
326 
328 {
329  std::unique_ptr<QgsCircularString> circString( new QgsCircularString() );
331  QVector<QgsPoint> quad;
332  if ( oriented )
333  {
334  quad = quadrant();
335  }
336  else
337  {
338  quad = northQuadrant();
339  }
340  quad.append( quad.at( 0 ) );
341  for ( QVector<QgsPoint>::const_iterator it = quad.constBegin(); it != quad.constEnd(); ++it )
342  {
343  points.append( *it );
344  }
345  circString->setPoints( points );
346 
347  return circString.release();
348 }
349 
350 bool QgsCircle::contains( const QgsPoint &point, double epsilon ) const
351 {
352  return ( mCenter.distance( point ) <= mSemiMajorAxis + epsilon );
353 }
354 
356 {
358 }
359 
360 QString QgsCircle::toString( int pointPrecision, int radiusPrecision, int azimuthPrecision ) const
361 {
362  QString rep;
363  if ( isEmpty() )
364  rep = QStringLiteral( "Empty" );
365  else
366  rep = QStringLiteral( "Circle (Center: %1, Radius: %2, Azimuth: %3)" )
367  .arg( mCenter.asWkt( pointPrecision ), 0, 's' )
368  .arg( qgsDoubleToString( mSemiMajorAxis, radiusPrecision ), 0, 'f' )
369  .arg( qgsDoubleToString( mAzimuth, azimuthPrecision ), 0, 'f' );
370 
371  return rep;
372 
373 }
Circle geometry type.
Definition: qgscircle.h:43
A rectangle specified with double values.
Definition: qgsrectangle.h:41
double y
Definition: qgspoint.h:42
static bool segmentIntersection(const QgsPoint &p1, const QgsPoint &p2, const QgsPoint &q1, const QgsPoint &q2, QgsPoint &intersectionPoint, bool &isIntersection, double tolerance=1e-8, bool acceptImproperIntersection=false)
Compute the intersection between two segments.
double semiMinorAxis() const
Returns the semi-minor axis.
Definition: qgsellipse.h:133
bool addZValue(double zValue=0) override
Adds a z-dimension to the geometry, initialized to a preset value.
Definition: qgspoint.cpp:469
static double lineAngle(double x1, double y1, double x2, double y2)
Calculates the direction of line joining two points in radians, clockwise from the north direction...
double distance(double x, double y) const
Returns the distance between this point and a specified x, y coordinate.
Definition: qgspoint.h:276
A class to represent a 2D point.
Definition: qgspointxy.h:43
bool qgsDoubleNear(double a, double b, double epsilon=4 *std::numeric_limits< double >::epsilon())
Compare two doubles (but allow some difference)
Definition: qgis.h:265
int innerTangents(const QgsCircle &other, QgsPointXY &line1P1, QgsPointXY &line1P2, QgsPointXY &line2P1, QgsPointXY &line2P2) const
Calculates the inner tangent points between this circle and an other circle.
Definition: qgscircle.cpp:273
double semiMajorAxis() const
Returns the semi-major axis.
Definition: qgsellipse.h:127
double radius() const
Returns the radius of the circle.
Definition: qgscircle.h:247
QgsPoint center() const
Returns the center point.
Definition: qgsellipse.h:121
QVector< QgsPoint > northQuadrant() const
The four quadrants of the ellipse.
Definition: qgscircle.cpp:316
Triangle geometry type.
Definition: qgstriangle.h:33
void setSemiMinorAxis(double semiMinorAxis) override
Inherited method.
Definition: qgscircle.cpp:310
bool tangentToPoint(const QgsPointXY &p, QgsPointXY &pt1, QgsPointXY &pt2) const
Calculates the tangent points between this circle and the point p.
Definition: qgscircle.cpp:262
static QgsCircle fromCenterDiameter(const QgsPoint &center, double diameter, double azimuth=0)
Constructs a circle by a center point and a diameter.
Definition: qgscircle.cpp:176
static int circleCircleOuterTangents(const QgsPointXY &center1, double radius1, const QgsPointXY &center2, double radius2, QgsPointXY &line1P1, QgsPointXY &line1P2, QgsPointXY &line2P1, QgsPointXY &line2P2)
Calculates the outer tangent points for two circles, centered at center1 and center2 and with radii o...
static QgsCircle fromExtent(const QgsPoint &pt1, const QgsPoint &pt2)
Constructs a circle by an extent (aka bounding box / QgsRectangle).
Definition: qgscircle.cpp:279
QgsPoint mCenter
Definition: qgsellipse.h:252
static QgsCircle from3Tangents(const QgsPoint &pt1_tg1, const QgsPoint &pt2_tg1, const QgsPoint &pt1_tg2, const QgsPoint &pt2_tg2, const QgsPoint &pt1_tg3, const QgsPoint &pt2_tg3, double epsilon=1E-8)
Constructs a circle by 3 tangents on the circle (aka inscribed circle of a triangle).
Definition: qgscircle.cpp:191
double mSemiMajorAxis
Definition: qgsellipse.h:253
static bool setZValueFromPoints(const QgsPointSequence &points, QgsPoint &point)
A Z dimension is added to point if one of the point in the list points is in 3D.
double azimuth() const
Returns the azimuth.
Definition: qgsellipse.h:139
double mAzimuth
Definition: qgsellipse.h:255
double area() const override
The area of the ellipse.
Definition: qgscircle.cpp:294
static QgsPoint midpoint(const QgsPoint &pt1, const QgsPoint &pt2)
Returns a middle point between points pt1 and pt2.
QString qgsDoubleToString(double a, int precision=17)
Returns a string representation of a double.
Definition: qgis.h:225
QString asWkt(int precision=17) const override
Returns a WKT representation of the geometry.
Definition: qgspoint.cpp:223
void setSemiMajorAxis(double semiMajorAxis) override
Inherited method.
Definition: qgscircle.cpp:304
bool contains(const QgsPoint &point, double epsilon=1E-8) const
Returns true if the circle contains the point.
Definition: qgscircle.cpp:350
QgsWkbTypes::Type wkbType() const
Returns the WKB type of the geometry.
Point geometry type, with support for z-dimension and m-values.
Definition: qgspoint.h:37
double mSemiMinorAxis
Definition: qgsellipse.h:254
void setX(double x)
Sets the point&#39;s x-coordinate.
Definition: qgspoint.h:213
void setY(double y)
Sets the point&#39;s y-coordinate.
Definition: qgspoint.h:224
QVector< QgsPoint > QgsPointSequence
double perimeter() const override
The circumference of the ellipse using first approximation of Ramanujan.
Definition: qgscircle.cpp:299
static Type dropZ(Type type)
Drops the z dimension (if present) for a WKB type and returns the new type.
Definition: qgswkbtypes.h:922
virtual bool isEmpty() const
An ellipse is empty if axes are equal to 0.
Definition: qgsellipse.cpp:118
static QgsCircle from3Points(const QgsPoint &pt1, const QgsPoint &pt2, const QgsPoint &pt3, double epsilon=1E-8)
Constructs a circle by 3 points on the circle.
Definition: qgscircle.cpp:83
static QgsCircle minimalCircleFrom3Points(const QgsPoint &pt1, const QgsPoint &pt2, const QgsPoint &pt3, double epsilon=1E-8)
Constructs the smallest circle from 3 points.
Definition: qgscircle.cpp:223
static bool tangentPointAndCircle(const QgsPointXY &center, double radius, const QgsPointXY &p, QgsPointXY &pt1, QgsPointXY &pt2)
Calculates the tangent points between the circle with the specified center and radius and the point p...
bool convertTo(QgsWkbTypes::Type type) override
Converts the geometry to a specified type.
Definition: qgspoint.cpp:538
static int circleCircleInnerTangents(const QgsPointXY &center1, double radius1, const QgsPointXY &center2, double radius2, QgsPointXY &line1P1, QgsPointXY &line1P2, QgsPointXY &line2P1, QgsPointXY &line2P2)
Calculates the inner tangent points for two circles, centered at center1 and center2 and with radii o...
static int circleCircleIntersections(QgsPointXY center1, double radius1, QgsPointXY center2, double radius2, QgsPointXY &intersection1, QgsPointXY &intersection2)
Calculates the intersections points between the circle with center center1 and radius radius1 and the...
double z
Definition: qgspoint.h:43
Circular string geometry type.
static QgsCircle from2Points(const QgsPoint &pt1, const QgsPoint &pt2)
Constructs a circle by 2 points on the circle.
Definition: qgscircle.cpp:37
QgsRectangle boundingBox() const override
Returns the minimal bounding box for the ellipse.
Definition: qgscircle.cpp:355
QgsCircularString * toCircularString(bool oriented=false) const
Returns a circular string from the circle.
Definition: qgscircle.cpp:327
Ellipse geometry type.
Definition: qgsellipse.h:39
virtual QVector< QgsPoint > quadrant() const
The four quadrants of the ellipse.
Definition: qgsellipse.cpp:177
int intersections(const QgsCircle &other, QgsPoint &intersection1, QgsPoint &intersection2, bool useZ=false) const
Calculates the intersections points between this circle and an other circle.
Definition: qgscircle.cpp:239
bool is3D() const
Returns true if the geometry is 3D and contains a z-value.
int outerTangents(const QgsCircle &other, QgsPointXY &line1P1, QgsPointXY &line1P2, QgsPointXY &line2P1, QgsPointXY &line2P2) const
Calculates the outer tangent points between this circle and an other circle.
Definition: qgscircle.cpp:267
QString toString(int pointPrecision=17, int radiusPrecision=17, int azimuthPrecision=2) const override
returns a string representation of the ellipse.
Definition: qgscircle.cpp:360
QgsCircle inscribedCircle() const
Inscribed circle of the triangle.
static QgsCircle fromCenterPoint(const QgsPoint &center, const QgsPoint &pt1)
Constructs a circle by a center point and another point.
Definition: qgscircle.cpp:181
double x
Definition: qgspoint.h:41
virtual QgsPointSequence points(unsigned int segments=36) const
Returns a list of points with segmentation from segments.
Definition: qgsellipse.cpp:188