26void QgsEllipse::normalizeAxis()
40 , mSemiMajorAxis( axis_a )
41 , mSemiMinorAxis( axis_b )
49 const double dist_p1p2 = pt1.
distance( pt2 );
50 const double dist_p1p3 = pt1.
distance( pt3 );
51 const double dist_p2p3 = pt2.
distance( pt3 );
53 const double dist = dist_p1p3 + dist_p2p3;
57 const double axis_a = dist / 2.0;
58 const double axis_b = std::sqrt( std::pow( axis_a, 2.0 ) - std::pow( dist_p1p2 / 2.0, 2.0 ) );
68 const double axis_a = std::fabs( pt2.
x() - pt1.
x() ) / 2.0;
69 const double axis_b = std::fabs( pt2.
y() - pt1.
y() ) / 2.0;
79 const double axis_a = std::fabs( pt1.
x() -
center.
x() );
80 const double axis_b = std::fabs( pt1.
y() -
center.
y() );
160 return std::numeric_limits<double>::quiet_NaN();
174 return M_PI * ( 3 * ( a + b ) - std::sqrt( 10 * a * b + 3 * ( a * a + b * b ) ) );
197 pointsInternal( segments, x, y, z, m );
198 const bool hasZ = !z.empty();
199 const bool hasM = !m.empty();
200 pts.reserve( x.size() );
201 for (
int i = 0; i < x.size(); ++i )
204 hasZ ? z[i] : std::numeric_limits< double >::quiet_NaN(),
205 hasM ? m[i] : std::numeric_limits< double >::quiet_NaN() ) );
210void QgsEllipse::pointsInternal(
unsigned int segments, QVector<double> &x, QVector<double> &y, QVector<double> &z, QVector<double> &m )
const
224 std::vector<double> t( segments );
227 for (
unsigned int i = 0; i < segments; ++i )
229 t[i] = 2 * M_PI - ( ( 2 * M_PI ) / segments * i );
232 x.resize( segments );
233 y.resize( segments );
235 z.resize( segments );
237 m.resize( segments );
238 double *xOut = x.data();
239 double *yOut = y.data();
240 double *zOut = hasZ ? z.data() :
nullptr;
241 double *mOut = hasM ? m.data() :
nullptr;
243 const double cosAzimuth = std::cos(
azimuth );
244 const double sinAzimuth = std::sin(
azimuth );
245 for (
double it : t )
262 std::unique_ptr<QgsPolygon> polygon(
new QgsPolygon() );
265 return polygon.release();
270 return polygon.release();
285 pointsInternal( segments, x, y, z, m );
290 x.append( x.at( 0 ) );
291 y.append( y.at( 0 ) );
293 z.append( z.at( 0 ) );
295 m.append( m.at( 0 ) );
307 const double angle =
mAzimuth * M_PI / 180.0;
314 const double halfHeight = std::sqrt( ux * ux + uy * uy );
315 const double halfWidth = std::sqrt( vx * vx + vy * vy );
327 rep = QStringLiteral(
"Empty" );
329 rep = QStringLiteral(
"Ellipse (Center: %1, Semi-Major Axis: %2, Semi-Minor Axis: %3, Azimuth: %4)" )
340 std::unique_ptr<QgsPolygon> ombb(
new QgsPolygon() );
343 return ombb.release();
346 const QVector<QgsPoint> q =
quadrant();
356 ombb->setExteriorRing( ext );
358 return ombb.release();
bool isMeasure() const
Returns true if the geometry contains m values.
bool is3D() const
Returns true if the geometry is 3D and contains a z-value.
virtual double eccentricity() const
The eccentricity of the ellipse.
virtual QgsPolygon * toPolygon(unsigned int segments=36) const
Returns a segmented polygon.
virtual bool operator==(const QgsEllipse &elp) const
QgsPoint center() const
Returns the center point.
virtual QVector< QgsPoint > foci() const
Two foci of the ellipse.
virtual QString toString(int pointPrecision=17, int axisPrecision=17, int azimuthPrecision=2) const
returns a string representation of the ellipse.
static QgsEllipse fromCenterPoint(const QgsPoint &ptc, const QgsPoint &pt1)
Constructs an ellipse by a center point and a another point.
virtual QgsPointSequence points(unsigned int segments=36) const
Returns a list of points with segmentation from segments.
virtual QgsLineString * toLineString(unsigned int segments=36) const
Returns a segmented linestring.
virtual double focusDistance() const
The distance between the center and each foci.
virtual bool operator!=(const QgsEllipse &elp) const
double azimuth() const
Returns the azimuth.
virtual QVector< QgsPoint > quadrant() const
The four quadrants of the ellipse.
QgsEllipse()=default
Constructor for QgsEllipse.
virtual double perimeter() const
The circumference of the ellipse using first approximation of Ramanujan.
void setAzimuth(double azimuth)
Sets the azimuth (orientation).
virtual QgsPolygon * orientedBoundingBox() const
Returns the oriented minimal bounding box for the ellipse.
virtual void setSemiMinorAxis(double semiMinorAxis)
Sets the semi-minor axis.
static QgsEllipse fromExtent(const QgsPoint &pt1, const QgsPoint &pt2)
Constructs an ellipse by an extent (aka bounding box / QgsRectangle).
virtual double area() const
The area of the ellipse.
virtual bool isEmpty() const
An ellipse is empty if axes are equal to 0.
static QgsEllipse fromFoci(const QgsPoint &pt1, const QgsPoint &pt2, const QgsPoint &pt3)
Constructs an ellipse by foci (pt1 and pt2) and a point pt3.
virtual QgsRectangle boundingBox() const
Returns the minimal bounding box for the ellipse.
virtual void setSemiMajorAxis(double semiMajorAxis)
Sets the semi-major axis.
static QgsEllipse fromCenter2Points(const QgsPoint &ptc, const QgsPoint &pt1, const QgsPoint &pt2)
Constructs an ellipse by a central point and two other points.
static double lineAngle(double x1, double y1, double x2, double y2)
Calculates the direction of line joining two points in radians, clockwise from the north direction.
static double normalizedAngle(double angle)
Ensures that an angle is in the range 0 <= angle < 2 pi.
static QgsPoint projectPointOnSegment(const QgsPoint &p, const QgsPoint &s1, const QgsPoint &s2)
Project the point on a segment.
static QgsPoint midpoint(const QgsPoint &pt1, const QgsPoint &pt2)
Returns a middle point between points pt1 and pt2.
static bool transferFirstZOrMValueToPoint(Iterator verticesBegin, Iterator verticesEnd, QgsPoint &point)
A Z or M dimension is added to point if one of the points in the list points contains Z or M value.
Line string geometry type, with support for z-dimension and m-values.
void setPoints(size_t size, const double *x, const double *y, const double *z=nullptr, const double *m=nullptr)
Resets the line string to match the specified point data.
A class to represent a 2D point.
Point geometry type, with support for z-dimension and m-values.
QString asWkt(int precision=17) const override
Returns a WKT representation of the geometry.
double distance(double x, double y) const
Returns the Cartesian 2D distance between this point and a specified x, y coordinate.
QgsPoint project(double distance, double azimuth, double inclination=90.0) const
Returns a new point which corresponds to this point projected by a specified distance with specified ...
A rectangle specified with double values.
QString qgsDoubleToString(double a, int precision=17)
Returns a string representation of a double.
bool qgsDoubleNear(double a, double b, double epsilon=4 *std::numeric_limits< double >::epsilon())
Compare two doubles (but allow some difference)
QVector< QgsPoint > QgsPointSequence