49  : mMinValue( minValue )
 
   50  , mMaxValue( maxValue )
 
   54  : mMinValue( other.mMinValue )
 
   55  , mMaxValue( other.mMaxValue )
 
   56  , mCurveTransform( other.mCurveTransform ? new 
QgsCurveTransform( *other.mCurveTransform ) : nullptr )
 
   71  QVariantMap transformerMap = transformer.toMap();
 
   73  mMinValue = transformerMap.value( QStringLiteral( 
"minValue" ), 0.0 ).toDouble();
 
   74  mMaxValue = transformerMap.value( QStringLiteral( 
"maxValue" ), 1.0 ).toDouble();
 
   77  QVariantMap curve = transformerMap.value( QStringLiteral( 
"curve" ) ).toMap();
 
   79  if ( !curve.isEmpty() )
 
   90  QVariantMap transformerMap;
 
   92  transformerMap.insert( QStringLiteral( 
"minValue" ), 
mMinValue );
 
   93  transformerMap.insert( QStringLiteral( 
"maxValue" ), 
mMaxValue );
 
   97    transformerMap.insert( QStringLiteral( 
"curve" ), 
mCurveTransform->toVariant() );
 
   99  return transformerMap;
 
  104  baseExpression.clear();
 
  134  , mMinOutput( minOutput )
 
  135  , mMaxOutput( maxOutput )
 
  136  , mNullOutput( nullOutput )
 
  137  , mExponent( exponent )
 
  157  transformerMap.insert( QStringLiteral( 
"minOutput" ), mMinOutput );
 
  158  transformerMap.insert( QStringLiteral( 
"maxOutput" ), mMaxOutput );
 
  159  transformerMap.insert( QStringLiteral( 
"nullOutput" ), mNullOutput );
 
  160  transformerMap.insert( QStringLiteral( 
"exponent" ), mExponent );
 
  162  return transformerMap;
 
  169  QVariantMap transformerMap = transformer.toMap();
 
  171  mMinOutput = transformerMap.value( QStringLiteral( 
"minOutput" ), 0.0 ).toDouble();
 
  172  mMaxOutput = transformerMap.value( QStringLiteral( 
"maxOutput" ), 1.0 ).toDouble();
 
  173  mNullOutput = transformerMap.value( QStringLiteral( 
"nullOutput" ), 0.0 ).toDouble();
 
  174  mExponent = transformerMap.value( QStringLiteral( 
"exponent" ), 1.0 ).toDouble();
 
  181    return std::clamp( input, mMinOutput, mMaxOutput );
 
  198  double dblValue = v.toDouble( &ok );
 
  203    return value( dblValue );
 
  213  QString minValueString = QString::number( 
mMinValue );
 
  214  QString maxValueString = QString::number( 
mMaxValue );
 
  215  QString minOutputString = QString::number( mMinOutput );
 
  216  QString maxOutputString = QString::number( mMaxOutput );
 
  217  QString nullOutputString = QString::number( mNullOutput );
 
  218  QString exponentString = QString::number( mExponent );
 
  221    return QStringLiteral( 
"coalesce(scale_linear(%1, %2, %3, %4, %5), %6)" ).arg( baseExpression, minValueString, maxValueString, minOutputString, maxOutputString, nullOutputString );
 
  223    return QStringLiteral( 
"coalesce(scale_polynomial(%1, %2, %3, %4, %5, %6), %7)" ).arg( baseExpression, minValueString, maxValueString, minOutputString, maxOutputString, exponentString, nullOutputString );
 
  230  double nullValue = 0.0;
 
  233  baseExpression.clear();
 
  245  QList<QgsExpressionNode *> args = f->
args()->
list();
 
  294    baseExpression = args[0]->
dump();
 
  306  , mMinSize( minSize )
 
  307  , mMaxSize( maxSize )
 
  308  , mNullSize( nullSize )
 
  309  , mExponent( exponent )
 
  332  transformerMap.insert( QStringLiteral( 
"scaleType" ), 
static_cast< int >( mType ) );
 
  333  transformerMap.insert( QStringLiteral( 
"minSize" ), mMinSize );
 
  334  transformerMap.insert( QStringLiteral( 
"maxSize" ), mMaxSize );
 
  335  transformerMap.insert( QStringLiteral( 
"nullSize" ), mNullSize );
 
  336  transformerMap.insert( QStringLiteral( 
"exponent" ), mExponent );
 
  338  return transformerMap;
 
  345  QVariantMap transformerMap = transformer.toMap();
 
  347  mType = 
static_cast< ScaleType >( transformerMap.value( QStringLiteral( 
"scaleType" ), 
Linear ).toInt() );
 
  348  mMinSize = transformerMap.value( QStringLiteral( 
"minSize" ), 0.0 ).toDouble();
 
  349  mMaxSize = transformerMap.value( QStringLiteral( 
"maxSize" ), 1.0 ).toDouble();
 
  350  mNullSize = transformerMap.value( QStringLiteral( 
"nullSize" ), 0.0 ).toDouble();
 
  351  mExponent = transformerMap.value( QStringLiteral( 
"exponent" ), 1.0 ).toDouble();
 
  402  double dblValue = value.toDouble( &ok );
 
  407    return size( dblValue );
 
  417  QString minValueString = QString::number( 
mMinValue );
 
  418  QString maxValueString = QString::number( 
mMaxValue );
 
  419  QString minSizeString = QString::number( mMinSize );
 
  420  QString maxSizeString = QString::number( mMaxSize );
 
  421  QString nullSizeString = QString::number( mNullSize );
 
  422  QString exponentString = QString::number( mExponent );
 
  427      return QStringLiteral( 
"coalesce(scale_linear(%1, %2, %3, %4, %5), %6)" ).arg( baseExpression, minValueString, maxValueString, minSizeString, maxSizeString, nullSizeString );
 
  432      return QStringLiteral( 
"coalesce(scale_polynomial(%1, %2, %3, %4, %5, %6), %7)" ).arg( baseExpression, minValueString, maxValueString, minSizeString, maxSizeString, exponentString, nullSizeString );
 
  446  baseExpression.clear();
 
  458  QList<QgsExpressionNode *> args = f->
args()->
list();
 
  515    baseExpression = args[0]->
dump();
 
  527    const QColor &nullColor )
 
  529  , mGradientRamp( ramp )
 
  530  , mNullColor( nullColor )
 
  537  , mGradientRamp( other.mGradientRamp ? other.mGradientRamp->clone() : nullptr )
 
  538  , mNullColor( other.mNullColor )
 
  539  , mRampName( other.mRampName )
 
  549  mGradientRamp.reset( other.mGradientRamp ? other.mGradientRamp->clone() : 
nullptr );
 
  550  mNullColor = other.mNullColor;
 
  551  mRampName = other.mRampName;
 
  558      mGradientRamp ? mGradientRamp->clone() : 
nullptr,
 
  560  c->setRampName( mRampName );
 
  575  transformerMap.insert( QStringLiteral( 
"rampName" ), mRampName );
 
  577  return transformerMap;
 
  582  QVariantMap transformerMap = definition.toMap();
 
  586  mGradientRamp.reset( 
nullptr );
 
  587  if ( transformerMap.contains( QStringLiteral( 
"colorramp" ) ) )
 
  593  mRampName = transformerMap.value( QStringLiteral( 
"rampName" ) ).toString();
 
  605  double dblValue = value.toDouble( &ok );
 
  610    return color( dblValue );
 
  620  if ( !mGradientRamp )
 
  623  QString minValueString = QString::number( 
mMinValue );
 
  624  QString maxValueString = QString::number( 
mMaxValue );
 
  625  QString nullColorString = mNullColor.name();
 
  627  return QStringLiteral( 
"coalesce(ramp_color('%1',scale_linear(%2, %3, %4, 0, 1)), '%5')" ).arg( !mRampName.isEmpty() ? mRampName : QStringLiteral( 
"custom ramp" ),
 
  628         baseExpression, minValueString, maxValueString, nullColorString );
 
  636  if ( !mGradientRamp )
 
  639  return mGradientRamp->color( scaledVal );
 
  644  return mGradientRamp.get();
 
  649  mGradientRamp.reset( ramp );
 
  659  return a.
x() < b.
x();
 
  665  calcSecondDerivativeArray();
 
  669  : mControlPoints( controlPoints )
 
  671  std::sort( mControlPoints.begin(), mControlPoints.end(), 
sortByX );
 
  672  calcSecondDerivativeArray();
 
  677  delete [] mSecondDerivativeArray;
 
  681  : mControlPoints( other.mControlPoints )
 
  683  if ( other.mSecondDerivativeArray )
 
  685    mSecondDerivativeArray = 
new double[ mControlPoints.count()];
 
  686    memcpy( mSecondDerivativeArray, other.mSecondDerivativeArray, 
sizeof( 
double ) * mControlPoints.count() );
 
  692  if ( 
this != &other )
 
  694    mControlPoints = other.mControlPoints;
 
  695    if ( other.mSecondDerivativeArray )
 
  697      delete [] mSecondDerivativeArray;
 
  698      mSecondDerivativeArray = 
new double[ mControlPoints.count()];
 
  699      memcpy( mSecondDerivativeArray, other.mSecondDerivativeArray, 
sizeof( 
double ) * mControlPoints.count() );
 
  707  mControlPoints = points;
 
  708  std::sort( mControlPoints.begin(), mControlPoints.end(), 
sortByX );
 
  709  for ( 
int i = 0; i < mControlPoints.count(); ++i )
 
  711    mControlPoints[ i ] = 
QgsPointXY( std::clamp( mControlPoints.at( i ).x(), 0.0, 1.0 ),
 
  712                                      std::clamp( mControlPoints.at( i ).y(), 0.0, 1.0 ) );
 
  714  calcSecondDerivativeArray();
 
  720  if ( mControlPoints.contains( point ) )
 
  723  mControlPoints << point;
 
  724  std::sort( mControlPoints.begin(), mControlPoints.end(), 
sortByX );
 
  725  calcSecondDerivativeArray();
 
  730  for ( 
int i = 0; i < mControlPoints.count(); ++i )
 
  735      mControlPoints.removeAt( i );
 
  739  calcSecondDerivativeArray();
 
  748  int n = mControlPoints.count();
 
  750    return std::clamp( x,  0.0, 1.0 ); 
 
  754    if ( x <= mControlPoints.at( 0 ).x() )
 
  755      return std::clamp( mControlPoints.at( 0 ).y(), 0.0, 1.0 );
 
  756    else if ( x >= mControlPoints.at( n - 1 ).x() )
 
  757      return std::clamp( mControlPoints.at( 1 ).y(), 0.0, 1.0 );
 
  760      double dx = mControlPoints.at( 1 ).x() - mControlPoints.at( 0 ).x();
 
  761      double dy = mControlPoints.at( 1 ).y() - mControlPoints.at( 0 ).y();
 
  762      return std::clamp( ( x - mControlPoints.at( 0 ).x() ) * ( dy / dx ) + mControlPoints.at( 0 ).y(), 0.0,  1.0 );
 
  767  if ( x <= mControlPoints.at( 0 ).x() )
 
  768    return std::clamp( mControlPoints.at( 0 ).y(), 0.0, 1.0 );
 
  769  if ( x >= mControlPoints.at( n - 1 ).x() )
 
  770    return std::clamp( mControlPoints.at( n - 1 ).y(), 0.0, 1.0 );
 
  773  QList<QgsPointXY>::const_iterator pointIt = mControlPoints.constBegin();
 
  778  for ( 
int i = 0; i < n - 1; ++i )
 
  780    if ( x < nextControlPoint.
x() )
 
  783      double h = nextControlPoint.
x() - currentControlPoint.
x();
 
  784      double t = ( x - currentControlPoint.
x() ) / h;
 
  788      return std::clamp( a * currentControlPoint.
y() + t * nextControlPoint.
y() + ( h * h / 6 ) * ( ( a * a * a - a ) * mSecondDerivativeArray[i] + ( t * t * t - t ) * mSecondDerivativeArray[i + 1] ),
 
  793    if ( pointIt == mControlPoints.constEnd() )
 
  796    currentControlPoint = nextControlPoint;
 
  797    nextControlPoint = *pointIt;
 
  801  return std::clamp( x, 0.0, 1.0 );
 
  810  QVector<double> result;
 
  812  int n = mControlPoints.count();
 
  816    const auto constX = x;
 
  817    for ( 
double i : constX )
 
  824  QList<QgsPointXY>::const_iterator pointIt = mControlPoints.constBegin();
 
  830  double currentX = x.at( xIndex );
 
  832  while ( currentX <= currentControlPoint.
x() )
 
  834    result << std::clamp( currentControlPoint.
y(), 0.0, 1.0 );
 
  836    currentX = x.at( xIndex );
 
  839  for ( 
int i = 0; i < n - 1; ++i )
 
  841    while ( currentX < nextControlPoint.
x() )
 
  844      double h = nextControlPoint.
x() - currentControlPoint.
x();
 
  846      double t = ( currentX - currentControlPoint.
x() ) / h;
 
  850      result << std::clamp( a * currentControlPoint.
y() + t * nextControlPoint.
y() + ( h * h / 6 ) * ( ( a * a * a - a )*mSecondDerivativeArray[i] + ( t * t * t - t )*mSecondDerivativeArray[i + 1] ), 0.0, 1.0 );
 
  852      if ( xIndex == x.count() )
 
  855      currentX = x.at( xIndex );
 
  859    if ( pointIt == mControlPoints.constEnd() )
 
  862    currentControlPoint = nextControlPoint;
 
  863    nextControlPoint = *pointIt;
 
  867  while ( xIndex < x.count() )
 
  869    result << std::clamp( nextControlPoint.
y(), 0.0, 1.0 );
 
  878  QString xString = elem.attribute( QStringLiteral( 
"x" ) );
 
  879  QString yString = elem.attribute( QStringLiteral( 
"y" ) );
 
  881  QStringList xVals = xString.split( 
',' );
 
  882  QStringList yVals = yString.split( 
',' );
 
  883  if ( xVals.count() != yVals.count() )
 
  886  QList< QgsPointXY > newPoints;
 
  888  for ( 
int i = 0; i < xVals.count(); ++i )
 
  890    double x = xVals.at( i ).toDouble( &ok );
 
  893    double y = yVals.at( i ).toDouble( &ok );
 
  906  const auto constMControlPoints = mControlPoints;
 
  907  for ( 
const QgsPointXY &p : constMControlPoints )
 
  913  transformElem.setAttribute( QStringLiteral( 
"x" ), x.join( 
',' ) );
 
  914  transformElem.setAttribute( QStringLiteral( 
"y" ), 
y.join( 
',' ) );
 
  921  QVariantMap transformMap;
 
  925  const auto constMControlPoints = mControlPoints;
 
  926  for ( 
const QgsPointXY &p : constMControlPoints )
 
  932  transformMap.insert( QStringLiteral( 
"x" ), x.join( 
',' ) );
 
  933  transformMap.insert( QStringLiteral( 
"y" ), 
y.join( 
',' ) );
 
  940  QVariantMap transformMap = transformer.toMap();
 
  942  QString xString = transformMap.value( QStringLiteral( 
"x" ) ).toString();
 
  943  QString yString = transformMap.value( QStringLiteral( 
"y" ) ).toString();
 
  945  QStringList xVals = xString.split( 
',' );
 
  946  QStringList yVals = yString.split( 
',' );
 
  947  if ( xVals.count() != yVals.count() )
 
  950  QList< QgsPointXY > newPoints;
 
  952  for ( 
int i = 0; i < xVals.count(); ++i )
 
  954    double x = xVals.at( i ).toDouble( &ok );
 
  957    double y = yVals.at( i ).toDouble( &ok );
 
  970void QgsCurveTransform::calcSecondDerivativeArray()
 
  972  int n = mControlPoints.count();
 
  976  delete[] mSecondDerivativeArray;
 
  978  double *matrix = 
new double[ n * 3 ];
 
  979  double *result = 
new double[ n ];
 
  984  QList<QgsPointXY>::const_iterator pointIt = mControlPoints.constBegin();
 
  991  for ( 
int i = 1; i < n - 1; ++i )
 
  993    matrix[i * 3 + 0 ] = ( pointI.
x() - pointIm1.
x() ) / 6.0;
 
  994    matrix[i * 3 + 1 ] = ( pointIp1.
x() - pointIm1.
x() ) / 3.0;
 
  995    matrix[i * 3 + 2 ] = ( pointIp1.
x() - pointI.
x() ) / 6.0;
 
  996    result[i] = ( pointIp1.
y() - pointI.
y() ) / ( pointIp1.
x() - pointI.
x() ) - ( pointI.
y() - pointIm1.
y() ) / ( pointI.
x() - pointIm1.
x() );
 
 1002    if ( pointIt == mControlPoints.constEnd() )
 
 1005    pointIp1 = *pointIt;
 
 1007  matrix[( n - 1 ) * 3 + 0] = 0;
 
 1008  matrix[( n - 1 ) * 3 + 1] = 1;
 
 1009  matrix[( n - 1 ) * 3 + 2] = 0;
 
 1013  for ( 
int i = 1; i < n; ++i )
 
 1015    double k = matrix[i * 3 + 0] / matrix[( i - 1 ) * 3 + 1];
 
 1016    matrix[i * 3 + 1] -= k * matrix[( i - 1 ) * 3 + 2];
 
 1017    matrix[i * 3 + 0] = 0;
 
 1018    result[i] -= k * result[i - 1];
 
 1021  for ( 
int i = n - 2; i >= 0; --i )
 
 1023    double k = matrix[i * 3 + 2] / matrix[( i + 1 ) * 3 + 1];
 
 1024    matrix[i * 3 + 1] -= k * matrix[( i + 1 ) * 3 + 0];
 
 1025    matrix[i * 3 + 2] = 0;
 
 1026    result[i] -= k * result[i + 1];
 
 1030  mSecondDerivativeArray = 
new double[n];
 
 1031  for ( 
int i = 0; i < n; ++i )
 
 1033    mSecondDerivativeArray[i] = result[i] / matrix[( i * 3 ) + 1];
 
Abstract base class for color ramps.
 
Expression contexts are used to encapsulate the parameters around which a QgsExpression should be eva...
 
An expression node which takes it value from a feature's field.
 
QString dump() const override
Dump this node into a serialized (part) of an expression.
 
An expression node for expression functions.
 
int fnIndex() const
Returns the index of the node's function.
 
QgsExpressionNode::NodeList * args() const
Returns a list of arguments specified for the function.
 
QList< QgsExpressionNode * > list()
Gets a list of all the nodes.
 
Class for parsing and evaluation of expressions (formerly called "search strings").
 
static const QList< QgsExpressionFunction * > & Functions()
 
static QString quotedValue(const QVariant &value)
Returns a string representation of a literal value, including appropriate quotations where required.
 
const QgsExpressionNode * rootNode() const
Returns the root node of the expression.
 
QVariant evaluate()
Evaluate the feature and return the result.
 
A class to represent a 2D point.
 
static QVariant colorRampToVariant(const QString &name, QgsColorRamp *ramp)
Saves a color ramp to a QVariantMap, wrapped in a QVariant.
 
static QColor decodeColor(const QString &str)
 
static QgsColorRamp * loadColorRamp(QDomElement &element)
Creates a color ramp from the settings encoded in an XML element.
 
static QString encodeColor(const QColor &color)
 
static bool isNull(const QVariant &variant)
Returns true if the specified variant should be considered a NULL value.
 
As part of the API refactoring and improvements which landed in the Processing API was substantially reworked from the x version This was done in order to allow much of the underlying Processing framework to be ported into c
 
QString qgsDoubleToString(double a, int precision=17)
Returns a string representation of a double.
 
bool qgsDoubleNear(double a, double b, double epsilon=4 *std::numeric_limits< double >::epsilon())
Compare two doubles (but allow some difference)