24 #include <unordered_map> 
   25 #include <unordered_set> 
   29 void QgsRasterAnalysisUtils::cellInfoForBBox( 
const QgsRectangle &rasterBBox, 
const QgsRectangle &featureBBox, 
double cellSizeX, 
double cellSizeY,
 
   30     int &nCellsX, 
int &nCellsY, 
int rasterWidth, 
int rasterHeight, 
QgsRectangle &rasterBlockExtent )
 
   43   int offsetX = 
static_cast< int >( std::floor( ( intersectBox.
xMinimum() - rasterBBox.
xMinimum() ) / cellSizeX ) );
 
   44   int offsetY = 
static_cast< int >( std::floor( ( rasterBBox.
yMaximum() - intersectBox.
yMaximum() ) / cellSizeY ) );
 
   46   int maxColumn = 
static_cast< int >( std::floor( ( intersectBox.
xMaximum() - rasterBBox.
xMinimum() ) / cellSizeX ) ) + 1;
 
   47   int maxRow = 
static_cast< int >( std::floor( ( rasterBBox.
yMaximum() - intersectBox.
yMinimum() ) / cellSizeY ) ) + 1;
 
   49   nCellsX = maxColumn - offsetX;
 
   50   nCellsY = maxRow - offsetY;
 
   53   nCellsX = std::min( offsetX + nCellsX, rasterWidth ) - offsetX;
 
   54   nCellsY = std::min( offsetY + nCellsY, rasterHeight ) - offsetY;
 
   57                                     rasterBBox.
yMaximum() - offsetY * cellSizeY,
 
   58                                     rasterBBox.
xMinimum() + ( nCellsX + offsetX ) * cellSizeX,
 
   59                                     rasterBBox.
yMaximum() - ( nCellsY + offsetY ) * cellSizeY );
 
   62 void QgsRasterAnalysisUtils::statisticsFromMiddlePointTest( 
QgsRasterInterface *rasterInterface, 
int rasterBand, 
const QgsGeometry &poly, 
int nCellsX, 
int nCellsY, 
double cellSizeX, 
double cellSizeY, 
const QgsRectangle &rasterBBox,  
const std::function<
void( 
double )> &addValue, 
bool skipNodata )
 
   69   polyEngine->prepareGeometry();
 
   72   iter.startRasterRead( rasterBand, nCellsX, nCellsY, rasterBBox );
 
   74   std::unique_ptr< QgsRasterBlock > block;
 
   80   bool isNoData = 
false;
 
   81   while ( iter.readNextRasterPart( rasterBand, iterCols, iterRows, block, iterLeft, iterTop, &blockExtent ) )
 
   83     double cellCenterY = blockExtent.
yMaximum() - 0.5 * cellSizeY;
 
   85     for ( 
int row = 0; row < iterRows; ++row )
 
   87       double cellCenterX = blockExtent.
xMinimum() + 0.5 * cellSizeX;
 
   88       for ( 
int col = 0; col < iterCols; ++col )
 
   90         const double pixelValue = block->valueAndNoData( row, col, isNoData );
 
   91         if ( validPixel( pixelValue ) && ( !skipNodata || !isNoData ) )
 
   93           QgsPoint cellCenter( cellCenterX, cellCenterY );
 
   94           if ( polyEngine->contains( &cellCenter ) )
 
   96             addValue( pixelValue );
 
   99         cellCenterX += cellSizeX;
 
  101       cellCenterY -= cellSizeY;
 
  106 void QgsRasterAnalysisUtils::statisticsFromPreciseIntersection( 
QgsRasterInterface *rasterInterface, 
int rasterBand, 
const QgsGeometry &poly, 
int nCellsX, 
int nCellsY, 
double cellSizeX, 
double cellSizeY, 
const QgsRectangle &rasterBBox,  
const std::function<
void( 
double, 
double )> &addValue, 
bool skipNodata )
 
  110   double hCellSizeX = cellSizeX / 2.0;
 
  111   double hCellSizeY = cellSizeY / 2.0;
 
  112   double pixelArea = cellSizeX * cellSizeY;
 
  120   polyEngine->prepareGeometry();
 
  123   iter.startRasterRead( rasterBand, nCellsX, nCellsY, rasterBBox );
 
  125   std::unique_ptr< QgsRasterBlock > block;
 
  131   bool isNoData = 
false;
 
  132   while ( iter.readNextRasterPart( rasterBand, iterCols, iterRows, block, iterLeft, iterTop, &blockExtent ) )
 
  134     double currentY = blockExtent.
yMaximum() - 0.5 * cellSizeY;
 
  135     for ( 
int row = 0; row < iterRows; ++row )
 
  137       double currentX = blockExtent.
xMinimum() + 0.5 * cellSizeX;
 
  138       for ( 
int col = 0; col < iterCols; ++col )
 
  140         const double pixelValue = block->valueAndNoData( row, col, isNoData );
 
  141         if ( validPixel( pixelValue ) && ( !skipNodata || !isNoData ) )
 
  146           if ( !pixelRectGeometry.
isNull() && polyEngine->intersects( pixelRectGeometry.
constGet() ) )
 
  150             if ( !intersectGeometry.
isEmpty() )
 
  152               double intersectionArea = intersectGeometry.
area();
 
  153               if ( intersectionArea > 0.0 )
 
  155                 weight = intersectionArea / pixelArea;
 
  156                 addValue( pixelValue, weight );
 
  161         currentX += cellSizeX;
 
  163       currentY -= cellSizeY;
 
  168 bool QgsRasterAnalysisUtils::validPixel( 
double value )
 
  170   return !std::isnan( value );
 
  173 void QgsRasterAnalysisUtils::mapToPixel( 
const double x, 
const double y, 
const QgsRectangle bounds, 
const double unitsPerPixelX, 
const double unitsPerPixelY, 
int &px, 
int &py )
 
  175   px = trunc( ( x - bounds.
xMinimum() ) / unitsPerPixelX );
 
  176   py = trunc( ( y - bounds.
yMaximum() ) / -unitsPerPixelY );
 
  179 void QgsRasterAnalysisUtils::pixelToMap( 
const int px, 
const int py, 
const QgsRectangle bounds, 
const double unitsPerPixelX, 
const double unitsPerPixelY, 
double &x, 
double &y )
 
  181   x = bounds.
xMinimum() + ( px + 0.5 ) * unitsPerPixelX;
 
  182   y = bounds.
yMaximum() - ( py + 0.5 ) * unitsPerPixelY;
 
  185 static QVector< QPair< QString, Qgis::DataType > > sDataTypes;
 
  187 void populateDataTypes()
 
  189   if ( sDataTypes.empty() )
 
  205 std::unique_ptr<QgsProcessingParameterDefinition> QgsRasterAnalysisUtils::createRasterTypeParameter( 
const QString &name, 
const QString &description, 
Qgis::DataType defaultType )
 
  210   int defaultChoice = 0;
 
  212   for ( 
auto it = sDataTypes.constBegin(); it != sDataTypes.constEnd(); ++it )
 
  214     names.append( it->first );
 
  215     if ( it->second == defaultType )
 
  220   return std::make_unique< QgsProcessingParameterEnum >( name, description, names, 
false, defaultChoice );
 
  223 Qgis::DataType QgsRasterAnalysisUtils::rasterTypeChoiceToDataType( 
int choice )
 
  225   if ( choice < 0 || choice >= sDataTypes.count() )
 
  228   return sDataTypes.value( choice ).second;
 
  231 void QgsRasterAnalysisUtils::applyRasterLogicOperator( 
const std::vector< QgsRasterAnalysisUtils::RasterLogicInput > &inputs, 
QgsRasterDataProvider *destinationRaster, 
double outputNoDataValue, 
const bool treatNoDataAsFalse,
 
  233     std::function<
void( 
const std::vector< std::unique_ptr< QgsRasterBlock > > &, 
bool &, 
bool &, 
int, 
int, 
bool )> &applyLogicFunc,
 
  238   int nbBlocksWidth = 
static_cast< int>( std::ceil( 1.0 * width / maxWidth ) );
 
  239   int nbBlocksHeight = 
static_cast< int >( std::ceil( 1.0 * height / maxHeight ) );
 
  240   int nbBlocks = nbBlocksWidth * nbBlocksHeight;
 
  244   outputIter.startRasterRead( 1, width, height, extent );
 
  251   std::unique_ptr< QgsRasterBlock > outputBlock;
 
  252   while ( outputIter.readNextRasterPart( 1, iterCols, iterRows, outputBlock, iterLeft, iterTop, &blockExtent ) )
 
  254     std::vector< std::unique_ptr< QgsRasterBlock > > inputBlocks;
 
  255     for ( 
const QgsRasterAnalysisUtils::RasterLogicInput &i : inputs )
 
  257       for ( 
int band : i.bands )
 
  259         std::unique_ptr< QgsRasterBlock > b( i.interface->block( band, blockExtent, iterCols, iterRows ) );
 
  260         inputBlocks.emplace_back( std::move( b ) );
 
  264     feedback->
setProgress( 100 * ( ( iterTop / maxHeight * nbBlocksWidth ) + iterLeft / maxWidth ) / nbBlocks );
 
  265     for ( 
int row = 0; row < iterRows; row++ )
 
  270       for ( 
int column = 0; column < iterCols; column++ )
 
  273         bool resIsNoData = 
false;
 
  274         applyLogicFunc( inputBlocks, res, resIsNoData, row, column, treatNoDataAsFalse );
 
  282         outputBlock->setValue( row, column, resIsNoData ? outputNoDataValue : ( res ? 1 : 0 ) );
 
  285     destinationRaster->
writeBlock( outputBlock.get(), 1, iterLeft, iterTop );
 
  290 std::vector<double> QgsRasterAnalysisUtils::getCellValuesFromBlockStack( 
const std::vector< std::unique_ptr< QgsRasterBlock > > &inputBlocks, 
int &row, 
int &col, 
bool &noDataInStack )
 
  293   std::vector<double> cellValues;
 
  294   bool hasNoData = 
false;
 
  295   cellValues.reserve( inputBlocks.size() );
 
  297   for ( 
auto &block : inputBlocks )
 
  300     if ( !block || !block->isValid() )
 
  302       noDataInStack = 
true;
 
  307       value = block->valueAndNoData( row, col, hasNoData );
 
  310         noDataInStack = 
true;
 
  315         cellValues.push_back( value );
 
  322 double QgsRasterAnalysisUtils::meanFromCellValues( std::vector<double> &cellValues, 
int stackSize )
 
  324   double sum = std::accumulate( cellValues.begin(), cellValues.end(), 0.0 );
 
  325   double mean = sum / 
static_cast<double>( stackSize );
 
  329 double QgsRasterAnalysisUtils::medianFromCellValues( std::vector<double> &cellValues, 
int stackSize )
 
  331   std::sort( cellValues.begin(), cellValues.end() );
 
  332   bool even = ( stackSize % 2 ) < 1;
 
  335     return ( cellValues[stackSize / 2 - 1] + cellValues[stackSize / 2] ) / 2.0;
 
  339     return cellValues[( stackSize + 1 ) / 2 - 1];
 
  344 double QgsRasterAnalysisUtils::stddevFromCellValues( std::vector<double> &cellValues, 
int stackSize )
 
  346   double variance = varianceFromCellValues( cellValues, stackSize );
 
  347   double stddev = std::sqrt( variance );
 
  351 double QgsRasterAnalysisUtils::varianceFromCellValues( std::vector<double> &cellValues, 
int stackSize )
 
  353   double mean = meanFromCellValues( cellValues, stackSize );
 
  355   for ( 
int i = 0; i < stackSize; i++ )
 
  357     accum += std::pow( ( cellValues.at( i ) - mean ), 2.0 );
 
  359   double variance = accum / 
static_cast<double>( stackSize );
 
  363 double QgsRasterAnalysisUtils::maximumFromCellValues( std::vector<double> &cellValues )
 
  365   return *std::max_element( cellValues.begin(), cellValues.end() );
 
  368 double QgsRasterAnalysisUtils::minimumFromCellValues( std::vector<double> &cellValues )
 
  370   return *std::min_element( cellValues.begin(), cellValues.end() );
 
  373 double QgsRasterAnalysisUtils::majorityFromCellValues( std::vector<double> &cellValues, 
const double noDataValue, 
int stackSize )
 
  375   if ( stackSize == 1 )
 
  378     return cellValues[0];
 
  380   else if ( stackSize == 2 )
 
  383     return ( 
qgsDoubleNear( cellValues[0], cellValues[1] ) ) ?  cellValues[0] : noDataValue;
 
  385   else if ( std::adjacent_find( cellValues.begin(), cellValues.end(), std::not_equal_to<double>() ) == cellValues.end() )
 
  389     return cellValues[0];
 
  394     std::unordered_map<double, int> map;
 
  396     for ( 
int i = 0; i < stackSize; i++ )
 
  398       map[cellValues[i]]++;
 
  402     bool multipleMajorities = 
false;
 
  403     double result = noDataValue;
 
  404     for ( 
auto pair : map )
 
  406       if ( maxCount < pair.second )
 
  409         maxCount = pair.second;
 
  410         multipleMajorities = 
false;
 
  412       else if ( maxCount == pair.second )
 
  414         multipleMajorities = 
true;
 
  417     return multipleMajorities ? noDataValue : result;
 
  421 double QgsRasterAnalysisUtils::minorityFromCellValues( std::vector<double> &cellValues, 
const double noDataValue, 
int stackSize )
 
  423   if ( stackSize == 1 )
 
  426     return cellValues[0];
 
  428   else if ( stackSize == 2 )
 
  431     return ( 
qgsDoubleNear( cellValues[0], cellValues[1] ) ) ?  cellValues[0] : noDataValue;
 
  433   else if ( std::adjacent_find( cellValues.begin(), cellValues.end(), std::not_equal_to<double>() ) == cellValues.end() )
 
  437     return cellValues[0];
 
  442     std::unordered_map<double, int> map;
 
  444     for ( 
int i = 0; i < stackSize; i++ )
 
  446       map[cellValues[i]]++;
 
  449     int minCount = stackSize;
 
  450     bool multipleMinorities = 
false;
 
  451     double result = noDataValue; 
 
  452     for ( 
auto pair : map )
 
  454       if ( minCount > pair.second )
 
  457         minCount = pair.second;
 
  458         multipleMinorities = 
false;
 
  460       else if ( minCount == pair.second )
 
  462         multipleMinorities = 
true;
 
  465     return multipleMinorities ? noDataValue : result;
 
  469 double QgsRasterAnalysisUtils::rangeFromCellValues( std::vector<double> &cellValues )
 
  471   double max = *std::max_element( cellValues.begin(), cellValues.end() );
 
  472   double min = *std::min_element( cellValues.begin(), cellValues.end() );
 
  476 double QgsRasterAnalysisUtils::varietyFromCellValues( std::vector<double> &cellValues )
 
  478   std::unordered_set<double> uniqueValues( cellValues.begin(), cellValues.end() );
 
  479   return uniqueValues.size();
 
  482 double QgsRasterAnalysisUtils::nearestRankPercentile( std::vector<double> &cellValues, 
int stackSize, 
double percentile )
 
  485   std::sort( cellValues.begin(), cellValues.end() );
 
  488   if ( percentile > 0 )
 
  490     i = std::ceil( percentile * 
static_cast<double>( stackSize ) ) - 1;
 
  493   return cellValues[i];
 
  496 double QgsRasterAnalysisUtils::interpolatedPercentileInc( std::vector<double> &cellValues, 
int stackSize, 
double percentile )
 
  498   std::sort( cellValues.begin(), cellValues.end() );
 
  499   double x = ( percentile * ( stackSize - 1 ) );
 
  501   int i = 
static_cast<int>( std::floor( x ) );
 
  502   double xFraction = std::fmod( x, 1 );
 
  504   if ( stackSize == 1 )
 
  506     return cellValues[0];
 
  508   else if ( stackSize == 2 )
 
  510     return cellValues[0] + ( cellValues[1] - cellValues[0] ) * percentile;
 
  514     return cellValues[i] + ( cellValues[i + 1] - cellValues[i] ) * xFraction;
 
  518 double QgsRasterAnalysisUtils::interpolatedPercentileExc( std::vector<double> &cellValues, 
int stackSize, 
double percentile, 
double noDataValue )
 
  520   std::sort( cellValues.begin(), cellValues.end() );
 
  521   double x = ( percentile * ( stackSize + 1 ) );
 
  523   int i = 
static_cast<int>( std::floor( x ) ) - 1;
 
  524   double xFraction = std::fmod( x, 1 );
 
  525   double lowerExcValue =  1.0 / ( 
static_cast<double>( stackSize ) + 1.0 );
 
  526   double upperExcValue = 
static_cast<double>( stackSize ) / ( 
static_cast<double>( stackSize ) + 1.0 );
 
  528   if ( stackSize < 2 || ( ( percentile < lowerExcValue || percentile > upperExcValue ) ) )
 
  534     return cellValues[i] + ( cellValues[i + 1] - cellValues[i] ) * xFraction;
 
  538 double QgsRasterAnalysisUtils::interpolatedPercentRankInc( std::vector<double> &cellValues, 
int stackSize, 
double value, 
double noDataValue )
 
  540   std::sort( cellValues.begin(), cellValues.end() );
 
  542   if ( value < cellValues[0] || value > cellValues[stackSize - 1] )
 
  548     for ( 
int i = 0; i < stackSize - 1; i++ )
 
  550       if ( cellValues[i] <= value && cellValues[i + 1] >= value )
 
  552         double fraction = 0.0;
 
  556           fraction = ( value - cellValues[i] ) / ( cellValues[i + 1] - cellValues[i] );
 
  558         return ( fraction + i ) / ( stackSize - 1 );
 
  565 double QgsRasterAnalysisUtils::interpolatedPercentRankExc( std::vector<double> &cellValues, 
int stackSize, 
double value, 
double noDataValue )
 
  567   std::sort( cellValues.begin(), cellValues.end() );
 
  569   if ( value < cellValues[0] || value > cellValues[stackSize - 1] )
 
  575     for ( 
int i = 0; i < stackSize - 1; i++ )
 
  577       if ( cellValues[i] <= value && cellValues[i + 1] >= value )
 
  579         double fraction = 0.0;
 
  583           fraction = ( value - cellValues[i] ) / ( cellValues[i + 1] - cellValues[i] );
 
  585         return ( ( i + 1 ) + fraction ) / ( stackSize + 1 );
 
DataType
Raster data types.
@ Float32
Thirty two bit floating point (float)
@ CFloat64
Complex Float64.
@ Int16
Sixteen bit signed integer (qint16)
@ UInt16
Sixteen bit unsigned integer (quint16)
@ Byte
Eight bit unsigned integer (quint8)
@ Int32
Thirty two bit signed integer (qint32)
@ Float64
Sixty four bit floating point (double)
@ CFloat32
Complex Float32.
@ UInt32
Thirty two bit unsigned integer (quint32)
Base class for feedback objects to be used for cancellation of something running in a worker thread.
bool isCanceled() const SIP_HOLDGIL
Tells whether the operation has been canceled already.
void setProgress(double progress)
Sets the current progress for the feedback object.
A geometry is the spatial representation of a feature.
const QgsAbstractGeometry * constGet() const SIP_HOLDGIL
Returns a non-modifiable (const) reference to the underlying abstract geometry primitive.
static QgsGeometry fromRect(const QgsRectangle &rect) SIP_HOLDGIL
Creates a new geometry from a QgsRectangle.
QgsGeometry intersection(const QgsGeometry &geometry) const
Returns a geometry representing the points shared by this geometry and other.
double area() const
Returns the planar, 2-dimensional area of the geometry.
static QgsGeometryEngine * createGeometryEngine(const QgsAbstractGeometry *geometry)
Creates and returns a new geometry engine representing the specified geometry.
bool isEmpty() const
Returns true if the geometry is empty (eg a linestring with no vertices, or a collection with no geom...
Point geometry type, with support for z-dimension and m-values.
Base class for raster data providers.
bool writeBlock(QgsRasterBlock *block, int band, int xOffset=0, int yOffset=0)
Writes pixel data from a raster block into the provider data source.
virtual bool setEditable(bool enabled)
Turns on/off editing mode of the provider.
Base class for processing filters like renderers, reprojector, resampler etc.
Iterator for sequentially processing raster cells.
static const int DEFAULT_MAXIMUM_TILE_WIDTH
Default maximum tile width.
static const int DEFAULT_MAXIMUM_TILE_HEIGHT
Default maximum tile height.
A rectangle specified with double values.
double yMaximum() const SIP_HOLDGIL
Returns the y maximum value (top side of rectangle).
double xMaximum() const SIP_HOLDGIL
Returns the x maximum value (right side of rectangle).
double xMinimum() const SIP_HOLDGIL
Returns the x minimum value (left side of rectangle).
double yMinimum() const SIP_HOLDGIL
Returns the y minimum value (bottom side of rectangle).
bool isEmpty() const
Returns true if the rectangle is empty.
QgsRectangle intersect(const QgsRectangle &rect) const
Returns the intersection with the given rectangle.
unsigned long long qgssize
Qgssize is used instead of size_t, because size_t is stdlib type, unknown by SIP, and it would be har...
bool qgsDoubleNear(double a, double b, double epsilon=4 *std::numeric_limits< double >::epsilon())
Compare two doubles (but allow some difference)