20 #include <unordered_set>
24 QString QgsDbscanClusteringAlgorithm::name()
const
26 return QStringLiteral(
"dbscanclustering" );
29 QString QgsDbscanClusteringAlgorithm::displayName()
const
31 return QObject::tr(
"DBSCAN clustering" );
34 QString QgsDbscanClusteringAlgorithm::shortDescription()
const
36 return QObject::tr(
"Clusters point features using a density based scan algorithm." );
39 QStringList QgsDbscanClusteringAlgorithm::tags()
const
41 return QObject::tr(
"clustering,clusters,density,based,points" ).split(
',' );
44 QString QgsDbscanClusteringAlgorithm::group()
const
46 return QObject::tr(
"Vector analysis" );
49 QString QgsDbscanClusteringAlgorithm::groupId()
const
51 return QStringLiteral(
"vectoranalysis" );
54 void QgsDbscanClusteringAlgorithm::initAlgorithm(
const QVariantMap & )
61 QObject::tr(
"Maximum distance between clustered points" ), 1, QStringLiteral(
"INPUT" ),
false, 0 ) );
63 auto dbscanStarParam = qgis::make_unique<QgsProcessingParameterBoolean>( QStringLiteral(
"DBSCAN*" ),
64 QObject::tr(
"Treat border points as noise (DBSCAN*)" ),
false,
true );
66 addParameter( dbscanStarParam.release() );
68 auto fieldNameParam = qgis::make_unique<QgsProcessingParameterString>( QStringLiteral(
"FIELD_NAME" ),
69 QObject::tr(
"Cluster field name" ), QStringLiteral(
"CLUSTER_ID" ) );
71 addParameter( fieldNameParam.release() );
72 auto sizeFieldNameParam = qgis::make_unique<QgsProcessingParameterString>( QStringLiteral(
"SIZE_FIELD_NAME" ),
73 QObject::tr(
"Cluster size field name" ), QStringLiteral(
"CLUSTER_SIZE" ) );
75 addParameter( sizeFieldNameParam.release() );
82 QString QgsDbscanClusteringAlgorithm::shortHelpString()
const
84 return QObject::tr(
"Clusters point features based on a 2D implementation of Density-based spatial clustering of applications with noise (DBSCAN) algorithm.\n\n"
85 "The algorithm requires two parameters, a minimum cluster size (“minPts”), and the maximum distance allowed between clustered points (“eps”)." );
88 QgsDbscanClusteringAlgorithm *QgsDbscanClusteringAlgorithm::createInstance()
const
90 return new QgsDbscanClusteringAlgorithm();
93 struct KDBushDataEqualById
101 struct KDBushDataHashById
105 return std::hash< QgsFeatureId > {}( a.
id );
111 std::unique_ptr< QgsProcessingFeatureSource > source( parameterAsSource( parameters, QStringLiteral(
"INPUT" ), context ) );
115 const std::size_t minSize =
static_cast< std::size_t
>( parameterAsInt( parameters, QStringLiteral(
"MIN_SIZE" ), context ) );
116 const double eps = parameterAsDouble( parameters, QStringLiteral(
"EPS" ), context );
117 const bool borderPointsAreNoise = parameterAsBoolean( parameters, QStringLiteral(
"DBSCAN*" ), context );
119 QgsFields outputFields = source->fields();
121 const QString clusterFieldName = parameterAsString( parameters, QStringLiteral(
"FIELD_NAME" ), context );
123 const QString clusterSizeFieldName = parameterAsString( parameters, QStringLiteral(
"SIZE_FIELD_NAME" ), context );
124 newFields.
append(
QgsField( clusterSizeFieldName, QVariant::Int ) );
128 std::unique_ptr< QgsFeatureSink > sink( parameterAsSink( parameters, QStringLiteral(
"OUTPUT" ), context, dest, outputFields, source->wkbType(), source->sourceCrs() ) );
133 feedback->
pushInfo( QObject::tr(
"Building spatial index" ) );
136 return QVariantMap();
139 feedback->
pushInfo( QObject::tr(
"Analysing clusters" ) );
140 std::unordered_map< QgsFeatureId, int> idToCluster;
141 idToCluster.reserve( index.size() );
143 const long featureCount = source->featureCount();
144 dbscan( minSize, eps, borderPointsAreNoise, featureCount, features, index, idToCluster, feedback );
147 std::unordered_map< int, int> clusterSize;
148 std::for_each( idToCluster.begin(), idToCluster.end(), [ &clusterSize ]( std::pair< QgsFeatureId, int > idCluster ) { clusterSize[ idCluster.second ]++; } );
151 const double writeStep = featureCount > 0 ? 10.0 / featureCount : 1;
152 features = source->getFeatures();
165 auto cluster = idToCluster.find( feat.
id() );
166 if ( cluster != idToCluster.end() )
168 attr << cluster->second << clusterSize[ cluster->second ];
172 attr << QVariant() << QVariant();
179 outputs.insert( QStringLiteral(
"OUTPUT" ), dest );
180 outputs.insert( QStringLiteral(
"NUM_CLUSTERS" ),
static_cast< unsigned int >( clusterSize.size() ) );
185 void QgsDbscanClusteringAlgorithm::dbscan(
const std::size_t minSize,
187 const bool borderPointsAreNoise,
188 const long featureCount,
191 std::unordered_map< QgsFeatureId, int> &idToCluster,
194 const double step = featureCount > 0 ? 90.0 / featureCount : 1;
196 std::unordered_set< QgsFeatureId > visited;
197 visited.reserve( index.
size() );
201 int clusterCount = 0;
216 if ( visited.find( feat.
id() ) != visited.end() )
233 std::unordered_set< QgsSpatialIndexKDBushData, KDBushDataHashById, KDBushDataEqualById> within;
239 within.insert( data );
241 if ( within.size() < minSize )
244 visited.insert( feat.
id() );
254 idToCluster[ feat.
id() ] = clusterCount;
257 while ( !within.empty() )
265 within.erase( within.begin() );
267 if ( visited.find( j.
id ) != visited.end() )
273 visited.insert( j.
id );
279 std::unordered_set< QgsSpatialIndexKDBushData, KDBushDataHashById, KDBushDataEqualById > within2;
282 within2.insert( data );
284 if ( within2.size() >= minSize )
287 std::copy_if( within2.begin(),
289 std::inserter( within, within.end() ),
292 return visited.find( needle.id ) == visited.end();
295 if ( !borderPointsAreNoise || within2.size() >= minSize )
297 idToCluster[ j.
id ] = clusterCount;