34 #include <unordered_set> 37 static void make_quad(
float x0,
float y0,
float z0,
float x1,
float y1,
float z1,
float height, QVector<float> &data,
bool addNormals )
40 float dy = -( y1 - y0 );
43 QVector3D vn( -dy, 0, dx );
48 data << x0 << z0 + height << -y0;
50 data << vn.x() << vn.y() << vn.z();
51 data << x1 << z1 + height << -y1;
53 data << vn.x() << vn.y() << vn.z();
54 data << x0 << z0 << -y0;
56 data << vn.x() << vn.y() << vn.z();
59 data << x0 << z0 << -y0;
61 data << vn.x() << vn.y() << vn.z();
62 data << x1 << z1 + height << -y1;
64 data << vn.x() << vn.y() << vn.z();
65 data << x1 << z1 << -y1;
67 data << vn.x() << vn.y() << vn.z();
74 , mAddNormals( addNormals )
75 , mInvertNormals( invertNormals )
76 , mAddBackFaces( addBackFaces )
83 , mOriginX( mBounds.xMinimum() )
84 , mOriginY( mBounds.yMinimum() )
85 , mAddNormals( addNormals )
86 , mInvertNormals( invertNormals )
87 , mAddBackFaces( addBackFaces )
93 void QgsTessellator::init()
95 mStride = 3 *
sizeof( float );
97 mStride += 3 *
sizeof( float );
100 static bool _isRingCounterClockWise(
const QgsCurve &ring )
107 for (
int i = 1; i < count + 1; ++i )
109 ring.
pointAt( i % count, pt, vt );
110 a += ptPrev.
x() * pt.
y() - ptPrev.
y() * pt.
x();
116 static void _makeWalls(
const QgsLineString &ring,
bool ccw,
float extrusionHeight, QVector<float> &data,
bool addNormals,
double originX,
double originY )
121 bool is_counter_clockwise = _isRingCounterClockWise( ring );
125 for (
int i = 1; i < ring.
numPoints(); ++i )
127 pt = ring.
pointN( is_counter_clockwise == ccw ? i : ring.
numPoints() - i - 1 );
128 float x0 = ptPrev.
x() - originX, y0 = ptPrev.
y() - originY;
129 float x1 = pt.
x() - originX, y1 = pt.
y() - originY;
130 float z0 = std::isnan( ptPrev.
z() ) ? 0 : ptPrev.
z();
131 float z1 = std::isnan( pt.
z() ) ? 0 : pt.
z();
134 make_quad( x0, y0, z0, x1, y1, z1, extrusionHeight, data, addNormals );
139 static QVector3D _calculateNormal(
const QgsLineString *curve,
double originX,
double originY,
bool invertNormal )
144 return QVector3D( 0, 0, 1 );
152 for (
int i = 1; i < curve->
numPoints(); i++ )
155 if ( pt1.
z() != pt2.
z() )
162 return QVector3D( 0, 0, 1 );
169 double nx = 0, ny = 0, nz = 0;
173 pt1.
setX( pt1.
x() - originX );
174 pt1.
setY( pt1.
y() - originY );
175 for (
int i = 1; i < curve->
numPoints(); i++ )
178 pt2.
setX( pt2.
x() - originX );
179 pt2.
setY( pt2.
y() - originY );
181 if ( std::isnan( pt1.
z() ) || std::isnan( pt2.
z() ) )
184 nx += ( pt1.
y() - pt2.
y() ) * ( pt1.
z() + pt2.
z() );
185 ny += ( pt1.
z() - pt2.
z() ) * ( pt1.
x() + pt2.
x() );
186 nz += ( pt1.
x() - pt2.
x() ) * ( pt1.
y() + pt2.
y() );
191 QVector3D normal( nx, ny, nz );
199 static void _normalVectorToXYVectors(
const QVector3D &pNormal, QVector3D &pXVector, QVector3D &pYVector )
204 if ( pNormal.z() > 0.001 || pNormal.z() < -0.001 )
206 pXVector = QVector3D( 1, 0, -pNormal.x() / pNormal.z() );
208 else if ( pNormal.y() > 0.001 || pNormal.y() < -0.001 )
210 pXVector = QVector3D( 1, -pNormal.x() / pNormal.y(), 0 );
214 pXVector = QVector3D( -pNormal.y() / pNormal.x(), 1, 0 );
216 pXVector.normalize();
217 pYVector = QVector3D::normal( pNormal, pXVector );
222 std::size_t
operator()(
const std::pair<float, float> pair )
const 224 std::size_t h1 = std::hash<float>()( pair.first );
225 std::size_t h2 = std::hash<float>()( pair.second );
231 static void _ringToPoly2tri(
const QgsLineString *ring, std::vector<p2t::Point *> &polyline, QHash<p2t::Point *, float> *zHash )
235 polyline.reserve( pCount );
237 const double *srcXData = ring->
xData();
238 const double *srcYData = ring->
yData();
239 const double *srcZData = ring->
zData();
240 std::unordered_set<std::pair<float, float>,
float_pair_hash> foundPoints;
242 for (
int i = 0; i < pCount - 1; ++i )
244 const float x = *srcXData++;
245 const float y = *srcYData++;
247 auto res = foundPoints.insert( std::make_pair( x, y ) );
254 p2t::Point *pt2 =
new p2t::Point( x, y );
255 polyline.push_back( pt2 );
258 ( *zHash )[pt2] = *srcZData++;
266 const double exp = 1e10;
267 return round( x * exp ) / exp;
271 static QgsCurve *_transform_ring_to_new_base(
const QgsLineString &curve,
const QgsPoint &pt0,
const QMatrix4x4 *toNewBase,
float scaleX,
float scaleY )
280 double *xData = x.data();
281 double *yData = y.data();
282 double *zData = z.data();
284 const double *srcXData = curve.
xData();
285 const double *srcYData = curve.
yData();
286 const double *srcZData = curve.
is3D() ? curve.
zData() :
nullptr;
288 for (
int i = 0; i < count; ++i )
290 QVector4D v( *srcXData++ - pt0.
x(),
291 *srcYData++ - pt0.
y(),
292 srcZData ? *srcZData++ - pt0.
z() : 0,
295 v = toNewBase->map( v );
298 v.setX( v.x() * scaleX );
299 v.setY( v.y() * scaleY );
319 static QgsPolygon *_transform_polygon_to_new_base(
const QgsPolygon &polygon,
const QgsPoint &pt0,
const QMatrix4x4 *toNewBase,
float scaleX,
float scaleY )
322 p->
setExteriorRing( _transform_ring_to_new_base( *qgsgeometry_cast< const QgsLineString * >( polygon.
exteriorRing() ), pt0, toNewBase, scaleX, scaleY ) );
324 p->
addInteriorRing( _transform_ring_to_new_base( *qgsgeometry_cast< const QgsLineString * >( polygon.
interiorRing( i ) ), pt0, toNewBase, scaleX, scaleY ) );
328 static bool _check_intersecting_rings(
const QgsPolygon &polygon )
330 std::vector< std::unique_ptr< QgsGeometryEngine > > ringEngines;
340 for (
const std::unique_ptr< QgsGeometryEngine > &ring : ringEngines )
342 if ( !ring->isSimple() )
363 if ( ringEngines.size() > 1 )
365 for (
size_t i = 0; i < ringEngines.size(); ++i )
367 std::unique_ptr< QgsGeometryEngine > &first = ringEngines.at( i );
369 first->prepareGeometry();
376 for (
int interiorRing = static_cast< int >( i ); interiorRing < polygon.
numInteriorRings(); ++interiorRing )
378 if ( first->intersects( polygon.
interiorRing( interiorRing ) ) )
391 std::vector< const QgsLineString * > rings;
393 rings.emplace_back( qgsgeometry_cast< const QgsLineString * >( polygon.
exteriorRing() ) );
395 rings.emplace_back( qgsgeometry_cast< const QgsLineString * >( polygon.
interiorRing( i ) ) );
400 if ( numPoints <= 1 )
403 const double *srcXData = ring->
xData();
404 const double *srcYData = ring->
yData();
405 double x0 = *srcXData++;
406 double y0 = *srcYData++;
407 for (
int i = 1; i < numPoints; ++i )
409 double x1 = *srcXData++;
410 double y1 = *srcYData++;
411 double d = ( x0 - x1 ) * ( x0 - x1 ) + ( y0 - y1 ) * ( y0 - y1 );
419 return min_d != 1e20 ? std::sqrt( min_d ) : 1e20;
429 const QVector3D pNormal = !mNoZ ? _calculateNormal( exterior, mOriginX, mOriginY, mInvertNormals ) : QVector3D();
430 const int pCount = exterior->
numPoints();
437 const double *xData = exterior->
xData();
438 const double *yData = exterior->
yData();
439 const double *zData = !mNoZ ? exterior->
zData() :
nullptr;
440 for (
int i = 0; i < 3; i++ )
442 mData << *xData++ - mOriginX << ( mNoZ ? 0 : *zData++ ) << - *yData++ + mOriginY;
444 mData << pNormal.x() << pNormal.z() << - pNormal.y();
450 for (
int i = 2; i >= 0; i-- )
452 mData << exterior->
xAt( i ) - mOriginX << ( mNoZ ? 0 : exterior->
zAt( i ) ) << - exterior->
yAt( i ) + mOriginY;
454 mData << -pNormal.x() << -pNormal.z() << pNormal.y();
463 std::unique_ptr<QMatrix4x4> toNewBase, toOldBase;
464 if ( !mNoZ && pNormal != QVector3D( 0, 0, 1 ) )
469 QVector3D pXVector, pYVector;
470 _normalVectorToXYVectors( pNormal, pXVector, pYVector );
475 toNewBase.reset(
new QMatrix4x4(
476 pXVector.x(), pXVector.y(), pXVector.z(), 0,
477 pYVector.x(), pYVector.y(), pYVector.z(), 0,
478 pNormal.x(), pNormal.y(), pNormal.z(), 0,
482 toOldBase.reset(
new QMatrix4x4( toNewBase->transposed() ) );
488 const float scaleX = !mBounds.isNull() ? 10000.0 / mBounds.width() : 1.0;
489 const float scaleY = !mBounds.isNull() ? 10000.0 / mBounds.height() : 1.0;
494 std::unique_ptr<QgsPolygon> polygonNew( _transform_polygon_to_new_base( polygon, pt0, toNewBase.get(), scaleX, scaleY ) );
503 if ( polygonSimplified.
isNull() )
513 QgsMessageLog::logMessage( QObject::tr(
"geometry's coordinates are too close to each other and simplification failed - skipping" ), QObject::tr(
"3D" ) );
518 polygonNew.reset( polygonSimplifiedData->
clone() );
522 if ( !_check_intersecting_rings( *polygonNew ) )
525 QgsMessageLog::logMessage( QObject::tr(
"polygon rings self-intersect or intersect each other - skipping" ), QObject::tr(
"3D" ) );
529 QList< std::vector<p2t::Point *> > polylinesToDelete;
530 QHash<p2t::Point *, float> z;
533 std::vector<p2t::Point *> polyline;
534 _ringToPoly2tri( qgsgeometry_cast< const QgsLineString * >( polygonNew->exteriorRing() ), polyline, mNoZ ?
nullptr : &z );
535 polylinesToDelete << polyline;
537 std::unique_ptr<p2t::CDT> cdt(
new p2t::CDT( polyline ) );
540 for (
int i = 0; i < polygonNew->numInteriorRings(); ++i )
542 std::vector<p2t::Point *> holePolyline;
545 _ringToPoly2tri( hole, holePolyline, mNoZ ?
nullptr : &z );
547 cdt->AddHole( holePolyline );
548 polylinesToDelete << holePolyline;
556 std::vector<p2t::Triangle *> triangles = cdt->GetTriangles();
558 mData.reserve( mData.size() + triangles.size() * ( ( mAddNormals ? 6 : 3 ) * ( mAddBackFaces ? 2 : 1 ) ) );
559 for (
size_t i = 0; i < triangles.size(); ++i )
561 p2t::Triangle *t = triangles[i];
562 for (
int j = 0; j < 3; ++j )
564 p2t::Point *p = t->GetPoint( j );
565 QVector4D pt( p->x, p->y, mNoZ ? 0 : z[p], 0 );
567 pt = *toOldBase * pt;
568 const double fx = ( pt.x() / scaleX ) - mOriginX + pt0.
x();
569 const double fy = ( pt.y() / scaleY ) - mOriginY + pt0.
y();
570 const double fz = mNoZ ? 0 : ( pt.z() + extrusionHeight + pt0.
z() );
571 mData << fx << fz << -fy;
573 mData << pNormal.x() << pNormal.z() << - pNormal.y();
579 for (
int j = 2; j >= 0; --j )
581 p2t::Point *p = t->GetPoint( j );
582 QVector4D pt( p->x, p->y, mNoZ ? 0 : z[p], 0 );
584 pt = *toOldBase * pt;
585 const double fx = ( pt.x() / scaleX ) - mOriginX + pt0.
x();
586 const double fy = ( pt.y() / scaleY ) - mOriginY + pt0.
y();
587 const double fz = mNoZ ? 0 : ( pt.z() + extrusionHeight + pt0.
z() );
588 mData << fx << fz << -fy;
590 mData << -pNormal.x() << -pNormal.z() << pNormal.y();
600 for (
int i = 0; i < polylinesToDelete.count(); ++i )
601 qDeleteAll( polylinesToDelete[i] );
605 if ( extrusionHeight != 0 )
607 _makeWalls( *exterior,
false, extrusionHeight, mData, mAddNormals, mOriginX, mOriginY );
610 _makeWalls( *qgsgeometry_cast< const QgsLineString * >( polygon.
interiorRing( i ) ),
true, extrusionHeight, mData, mAddNormals, mOriginX, mOriginY );
628 return mData.size() / ( mAddNormals ? 6 : 3 );
633 std::unique_ptr< QgsMultiPolygon > mp = qgis::make_unique< QgsMultiPolygon >();
634 const QVector<float> data = mData;
635 mp->reserve( mData.size() );
636 for (
auto it = data.constBegin(); it != data.constEnd(); )
A rectangle specified with double values.
bool isEmpty() const override
Returns true if the geometry is empty.
double zAt(int index) const
Returns the z-coordinate of the specified node in the line string.
bool qgsDoubleNear(double a, double b, double epsilon=4 *std::numeric_limits< double >::epsilon())
Compare two doubles (but allow some difference)
const QgsCurve * interiorRing(int i) const
Retrieves an interior ring from the curve polygon.
A geometry is the spatial representation of a feature.
int dataVerticesCount() const
Returns the number of vertices stored in the output data array.
virtual bool pointAt(int node, QgsPoint &point, QgsVertexId::VertexType &type) const =0
Returns the point and vertex id of a point within the curve.
std::unique_ptr< QgsMultiPolygon > asMultiPolygon() const
Returns the triangulation as a multipolygon geometry.
QgsPoint getPointFromData(QVector< float >::const_iterator &it)
static bool hasZ(Type type)
Tests whether a WKB type contains the z-dimension.
int numPoints() const override
Returns the number of points in the curve.
const double * xData() const
Returns a const pointer to the x vertex data.
void addInteriorRing(QgsCurve *ring) override
Adds an interior ring to the geometry (takes ownership)
int numInteriorRings() const
Returns the number of interior rings contained with the curve polygon.
double _round_coord(double x)
void addPolygon(const QgsPolygon &polygon, float extrusionHeight)
Tessellates a triangle and adds its vertex entries to the output data array.
static void logMessage(const QString &message, const QString &tag=QString(), Qgis::MessageLevel level=Qgis::Warning, bool notifyUser=true)
Adds a message to the log instance (and creates it if necessary).
double yAt(int index) const override
Returns the y-coordinate of the specified node in the line string.
T qgsgeometry_cast(const QgsAbstractGeometry *geom)
std::size_t operator()(const std::pair< float, float > pair) const
QgsTessellator(double originX, double originY, bool addNormals, bool invertNormals=false, bool addBackFaces=false)
Creates tessellator with a specified origin point of the world (in map coordinates) ...
Abstract base class for curved geometry type.
QgsWkbTypes::Type wkbType() const
Returns the WKB type of the geometry.
Point geometry type, with support for z-dimension and m-values.
double _minimum_distance_between_coordinates(const QgsPolygon &polygon)
const double * yData() const
Returns a const pointer to the y vertex data.
QgsPoint startPoint() const override
Returns the starting point of the curve.
const double * zData() const
Returns a const pointer to the z vertex data, or nullptr if the linestring does not have z values...
void setX(double x)
Sets the point's x-coordinate.
static QgsGeometryEngine * createGeometryEngine(const QgsAbstractGeometry *geometry)
Creates and returns a new geometry engine.
const QgsAbstractGeometry * constGet() const
Returns a non-modifiable (const) reference to the underlying abstract geometry primitive.
void setY(double y)
Sets the point's y-coordinate.
void setExteriorRing(QgsCurve *ring) override
Sets the exterior ring of the polygon.
Line string geometry type, with support for z-dimension and m-values.
QgsPolygon * clone() const override
Clones the geometry by performing a deep copy.
QgsPoint pointN(int i) const
Returns the specified point from inside the line string.
double xAt(int index) const override
Returns the x-coordinate of the specified node in the line string.
const QgsCurve * exteriorRing() const
Returns the curve polygon's exterior ring.
virtual int numPoints() const =0
Returns the number of points in the curve.
bool is3D() const
Returns true if the geometry is 3D and contains a z-value.