20#include <unordered_set>
24QString QgsDbscanClusteringAlgorithm::name()
const
26 return QStringLiteral(
"dbscanclustering" );
29QString QgsDbscanClusteringAlgorithm::displayName()
const
31 return QObject::tr(
"DBSCAN clustering" );
34QString QgsDbscanClusteringAlgorithm::shortDescription()
const
36 return QObject::tr(
"Clusters point features using a density based scan algorithm." );
39QStringList QgsDbscanClusteringAlgorithm::tags()
const
41 return QObject::tr(
"clustering,clusters,density,based,points,distance" ).split(
',' );
44QString QgsDbscanClusteringAlgorithm::group()
const
46 return QObject::tr(
"Vector analysis" );
49QString QgsDbscanClusteringAlgorithm::groupId()
const
51 return QStringLiteral(
"vectoranalysis" );
54void QgsDbscanClusteringAlgorithm::initAlgorithm(
const QVariantMap & )
58 addParameter(
new QgsProcessingParameterDistance( QStringLiteral(
"EPS" ), QObject::tr(
"Maximum distance between clustered points" ), 1, QStringLiteral(
"INPUT" ),
false, 0 ) );
60 auto dbscanStarParam = std::make_unique<QgsProcessingParameterBoolean>( QStringLiteral(
"DBSCAN*" ), QObject::tr(
"Treat border points as noise (DBSCAN*)" ),
false );
62 addParameter( dbscanStarParam.release() );
64 auto fieldNameParam = std::make_unique<QgsProcessingParameterString>( QStringLiteral(
"FIELD_NAME" ), QObject::tr(
"Cluster field name" ), QStringLiteral(
"CLUSTER_ID" ) );
66 addParameter( fieldNameParam.release() );
67 auto sizeFieldNameParam = std::make_unique<QgsProcessingParameterString>( QStringLiteral(
"SIZE_FIELD_NAME" ), QObject::tr(
"Cluster size field name" ), QStringLiteral(
"CLUSTER_SIZE" ) );
69 addParameter( sizeFieldNameParam.release() );
76QString QgsDbscanClusteringAlgorithm::shortHelpString()
const
78 return QObject::tr(
"Clusters point features based on a 2D implementation of Density-based spatial clustering of applications with noise (DBSCAN) algorithm.\n\n"
79 "The algorithm requires two parameters, a minimum cluster size (“minPts”), and the maximum distance allowed between clustered points (“eps”)." );
82QgsDbscanClusteringAlgorithm *QgsDbscanClusteringAlgorithm::createInstance()
const
84 return new QgsDbscanClusteringAlgorithm();
87struct KDBushDataEqualById
95struct KDBushDataHashById
99 return std::hash<QgsFeatureId> {}( a.
id );
105 std::unique_ptr<QgsProcessingFeatureSource> source( parameterAsSource( parameters, QStringLiteral(
"INPUT" ), context ) );
109 const std::size_t minSize =
static_cast<std::size_t
>( parameterAsInt( parameters, QStringLiteral(
"MIN_SIZE" ), context ) );
110 const double eps1 = parameterAsDouble( parameters, QStringLiteral(
"EPS" ), context );
111 const double eps2 = parameterAsDouble( parameters, QStringLiteral(
"EPS2" ), context );
112 const bool borderPointsAreNoise = parameterAsBoolean( parameters, QStringLiteral(
"DBSCAN*" ), context );
114 QgsFields outputFields = source->fields();
116 const QString clusterFieldName = parameterAsString( parameters, QStringLiteral(
"FIELD_NAME" ), context );
117 newFields.
append(
QgsField( clusterFieldName, QMetaType::Type::Int ) );
118 const QString clusterSizeFieldName = parameterAsString( parameters, QStringLiteral(
"SIZE_FIELD_NAME" ), context );
119 newFields.
append(
QgsField( clusterSizeFieldName, QMetaType::Type::Int ) );
123 std::unique_ptr<QgsFeatureSink> sink( parameterAsSink( parameters, QStringLiteral(
"OUTPUT" ), context, dest, outputFields, source->wkbType(), source->sourceCrs() ) );
129 std::unordered_map<QgsFeatureId, QDateTime> idToDateTime;
130 const QString dateTimeFieldName = parameterAsString( parameters, QStringLiteral(
"DATETIME_FIELD" ), context );
131 int dateTimefieldIndex = -1;
132 if ( !dateTimeFieldName.isEmpty() )
134 dateTimefieldIndex = source->fields().lookupField( dateTimeFieldName );
135 if ( dateTimefieldIndex == -1 )
146 feedback->
pushInfo( QObject::tr(
"Building spatial index" ) );
149 if ( dateTimefieldIndex >= 0 )
150 idToDateTime[ feature.
id() ] = feature.
attributes().at( dateTimefieldIndex ).toDateTime();
151 return true; }, feedback );
154 return QVariantMap();
157 feedback->
pushInfo( QObject::tr(
"Analysing clusters" ) );
158 std::unordered_map<QgsFeatureId, int> idToCluster;
159 idToCluster.reserve( index.size() );
160 const long featureCount = source->featureCount();
162 stdbscan( minSize, eps1, eps2, borderPointsAreNoise, featureCount, features, index, idToCluster, idToDateTime, feedback );
165 std::unordered_map<int, int> clusterSize;
166 std::for_each( idToCluster.begin(), idToCluster.end(), [&clusterSize]( std::pair<QgsFeatureId, int> idCluster ) { clusterSize[idCluster.second]++; } );
169 const double writeStep = featureCount > 0 ? 10.0 / featureCount : 1;
170 features = source->getFeatures();
183 const auto cluster = idToCluster.find( feat.
id() );
184 if ( cluster != idToCluster.end() )
186 attr << cluster->second << clusterSize[cluster->second];
190 attr << QVariant() << QVariant();
200 outputs.insert( QStringLiteral(
"OUTPUT" ), dest );
201 outputs.insert( QStringLiteral(
"NUM_CLUSTERS" ),
static_cast<unsigned int>( clusterSize.size() ) );
205void QgsDbscanClusteringAlgorithm::stdbscan(
const std::size_t minSize,
const double eps1,
const double eps2,
const bool borderPointsAreNoise,
const long featureCount,
QgsFeatureIterator features,
QgsSpatialIndexKDBush &index, std::unordered_map<QgsFeatureId, int> &idToCluster, std::unordered_map<QgsFeatureId, QDateTime> &idToDateTime,
QgsProcessingFeedback *feedback )
207 const double step = featureCount > 0 ? 90.0 / featureCount : 1;
209 std::unordered_set<QgsFeatureId> visited;
210 visited.reserve( index.
size() );
214 int clusterCount = 0;
229 if ( visited.find( feat.
id() ) != visited.end() )
246 if ( !idToDateTime.empty() && !idToDateTime[feat.
id()].isValid() )
254 std::unordered_set<QgsSpatialIndexKDBushData, KDBushDataHashById, KDBushDataEqualById> within;
259 if ( idToDateTime.empty() || ( idToDateTime[data.id].isValid() && std::abs( idToDateTime[pointId].msecsTo( idToDateTime[data.id] ) ) <= eps2 ) )
260 within.insert( data );
262 if ( within.size() < minSize )
265 visited.insert( feat.
id() );
275 idToCluster[feat.
id()] = clusterCount;
278 while ( !within.empty() )
286 within.erase( within.begin() );
288 if ( visited.find( j.
id ) != visited.end() )
294 visited.insert( j.
id );
300 std::unordered_set<QgsSpatialIndexKDBushData, KDBushDataHashById, KDBushDataEqualById> within2;
302 if ( idToDateTime.empty() || ( idToDateTime[data.id].isValid() && std::abs( idToDateTime[point2Id].msecsTo( idToDateTime[data.id] ) ) <= eps2 ) )
303 within2.insert( data );
306 if ( within2.size() >= minSize )
309 std::copy_if( within2.begin(), within2.end(), std::inserter( within, within.end() ), [&visited](
const QgsSpatialIndexKDBushData &needle ) {
310 return visited.find( needle.id ) == visited.end();
313 if ( !borderPointsAreNoise || within2.size() >= minSize )
315 idToCluster[j.
id] = clusterCount;
@ VectorPoint
Vector point layers.
@ Advanced
Parameter is an advanced parameter which should be hidden from users by default.
Wrapper for iterator of features from vector data provider or vector layer.
bool nextFeature(QgsFeature &f)
Fetch next feature and stores in f, returns true on success.
This class wraps a request for features to a vector layer (or directly its vector data provider).
QgsFeatureRequest & setSubsetOfAttributes(const QgsAttributeList &attrs)
Set a subset of attributes that will be fetched.
QgsFeatureRequest & setNoAttributes()
Set that no attributes will be fetched.
@ FastInsert
Use faster inserts, at the cost of updating the passed features to reflect changes made at the provid...
The feature class encapsulates a single feature including its unique ID, geometry and a list of field...
void setAttributes(const QgsAttributes &attrs)
Sets the feature's attributes.
bool hasGeometry() const
Returns true if the feature has an associated geometry.
bool isCanceled() const
Tells whether the operation has been canceled already.
void setProgress(double progress)
Sets the current progress for the feedback object.
Encapsulate a field in an attribute table or data source.
Container of fields for a vector layer.
bool append(const QgsField &field, Qgis::FieldOrigin origin=Qgis::FieldOrigin::Provider, int originIndex=-1)
Appends a field.
const QgsAbstractGeometry * constGet() const
Returns a non-modifiable (const) reference to the underlying abstract geometry primitive.
Qgis::WkbType wkbType() const
Returns type of the geometry as a WKB type (point / linestring / polygon etc.)
A class to represent a 2D point.
Contains information about the context in which a processing algorithm is executed.
Custom exception class for processing related exceptions.
Base class for providing feedback from a processing algorithm.
virtual void pushInfo(const QString &info)
Pushes a general informational message from the algorithm.
virtual void reportError(const QString &error, bool fatalError=false)
Reports that the algorithm encountered an error while executing.
A numeric output for processing algorithms.
A double numeric parameter for distance values.
A feature sink output for processing algorithms.
An input feature source (such as vector layers) parameter for processing algorithms.
A numeric parameter for processing algorithms.
static QgsFields combineFields(const QgsFields &fieldsA, const QgsFields &fieldsB, const QString &fieldsBPrefix=QString())
Combines two field lists, avoiding duplicate field names (in a case-insensitive manner).
A container for data stored inside a QgsSpatialIndexKDBush index.
QgsFeatureId id
Feature ID.
QgsPointXY point() const
Returns the indexed point.
A very fast static spatial index for 2D points based on a flat KD-tree.
qgssize size() const
Returns the size of the index, i.e.
QList< QgsSpatialIndexKDBushData > within(const QgsPointXY &point, double radius) const
Returns the list of features which are within the given search radius of point.
static QString displayString(Qgis::WkbType type)
Returns a non-translated display string type for a WKB type, e.g., the geometry name used in WKT geom...
static Qgis::WkbType flatType(Qgis::WkbType type)
Returns the flat type for a WKB type.
QList< int > QgsAttributeList