20 #include <unordered_set> 24 QString QgsDbscanClusteringAlgorithm::name()
const 26 return QStringLiteral(
"dbscanclustering" );
29 QString QgsDbscanClusteringAlgorithm::displayName()
const 31 return QObject::tr(
"DBSCAN clustering" );
34 QString QgsDbscanClusteringAlgorithm::shortDescription()
const 36 return QObject::tr(
"Clusters point features using a density based scan algorithm." );
39 QStringList QgsDbscanClusteringAlgorithm::tags()
const 41 return QObject::tr(
"clustering,clusters,density,based,points" ).split(
',' );
44 QString QgsDbscanClusteringAlgorithm::group()
const 46 return QObject::tr(
"Vector analysis" );
49 QString QgsDbscanClusteringAlgorithm::groupId()
const 51 return QStringLiteral(
"vectoranalysis" );
54 void QgsDbscanClusteringAlgorithm::initAlgorithm(
const QVariantMap & )
61 QObject::tr(
"Maximum distance between clustered points" ), 1, QStringLiteral(
"INPUT" ),
false, 0 ) );
63 auto dbscanStarParam = qgis::make_unique<QgsProcessingParameterBoolean>( QStringLiteral(
"DBSCAN*" ),
64 QObject::tr(
"Treat border points as noise (DBSCAN*)" ),
false, true );
66 addParameter( dbscanStarParam.release() );
68 auto fieldNameParam = qgis::make_unique<QgsProcessingParameterString>( QStringLiteral(
"FIELD_NAME" ),
69 QObject::tr(
"Cluster field name" ), QStringLiteral(
"CLUSTER_ID" ) );
71 addParameter( fieldNameParam.release() );
78 QString QgsDbscanClusteringAlgorithm::shortHelpString()
const 80 return QObject::tr(
"Clusters point features based on a 2D implementation of Density-based spatial clustering of applications with noise (DBSCAN) algorithm.\n\n" 81 "The algorithm requires two parameters, a minimum cluster size (“minPts”), and the maximum distance allowed between clustered points (“eps”)." );
84 QgsDbscanClusteringAlgorithm *QgsDbscanClusteringAlgorithm::createInstance()
const 86 return new QgsDbscanClusteringAlgorithm();
89 struct KDBushDataEqualById
97 struct KDBushDataHashById
101 return std::hash< QgsFeatureId > {}( a.
id );
107 std::unique_ptr< QgsProcessingFeatureSource > source( parameterAsSource( parameters, QStringLiteral(
"INPUT" ), context ) );
111 const std::size_t minSize =
static_cast< std::size_t
>( parameterAsInt( parameters, QStringLiteral(
"MIN_SIZE" ), context ) );
112 const double eps = parameterAsDouble( parameters, QStringLiteral(
"EPS" ), context );
113 const bool borderPointsAreNoise = parameterAsBool( parameters, QStringLiteral(
"DBSCAN*" ), context );
115 QgsFields outputFields = source->fields();
116 const QString clusterFieldName = parameterAsString( parameters, QStringLiteral(
"FIELD_NAME" ), context );
122 std::unique_ptr< QgsFeatureSink > sink( parameterAsSink( parameters, QStringLiteral(
"OUTPUT" ), context, dest, outputFields, source->wkbType(), source->sourceCrs() ) );
127 feedback->
pushInfo( QObject::tr(
"Building spatial index" ) );
130 return QVariantMap();
133 feedback->
pushInfo( QObject::tr(
"Analysing clusters" ) );
134 std::unordered_map< QgsFeatureId, int> idToCluster;
135 idToCluster.reserve( index.size() );
137 const long featureCount = source->featureCount();
139 int clusterCount = 0;
140 dbscan( minSize, eps, borderPointsAreNoise, featureCount, features, index, idToCluster, clusterCount, feedback );
143 const double writeStep = featureCount > 0 ? 10.0 / featureCount : 1;
144 features = source->getFeatures();
157 auto cluster = idToCluster.find( feat.
id() );
158 if ( cluster != idToCluster.end() )
160 attr << cluster->second;
171 outputs.insert( QStringLiteral(
"OUTPUT" ), dest );
172 outputs.insert( QStringLiteral(
"NUM_CLUSTERS" ), clusterCount );
177 void QgsDbscanClusteringAlgorithm::dbscan(
const std::size_t minSize,
179 const bool borderPointsAreNoise,
180 const long featureCount,
183 std::unordered_map< QgsFeatureId, int> &idToCluster,
187 const double step = featureCount > 0 ? 90.0 / featureCount : 1;
189 std::unordered_set< QgsFeatureId > visited;
190 visited.reserve( index.
size() );
209 if ( visited.find( feat.
id() ) != visited.end() )
226 std::unordered_set< QgsSpatialIndexKDBushData, KDBushDataHashById, KDBushDataEqualById> within;
232 within.insert( data );
234 if ( within.size() < minSize )
237 visited.insert( feat.
id() );
247 idToCluster[ feat.
id() ] = clusterCount;
250 while ( !within.empty() )
258 within.erase( within.begin() );
260 if ( visited.find( j.
id ) != visited.end() )
266 visited.insert( j.
id );
272 std::unordered_set< QgsSpatialIndexKDBushData, KDBushDataHashById, KDBushDataEqualById > within2;
275 within2.insert( data );
277 if ( within2.size() >= minSize )
280 std::copy_if( within2.begin(),
282 std::inserter( within, within.end() ),
285 return visited.find( needle.
id ) == visited.end();
288 if ( !borderPointsAreNoise || within2.size() >= minSize )
290 idToCluster[ j.
id ] = clusterCount;
Wrapper for iterator of features from vector data provider or vector layer.
bool isCanceled() const
Tells whether the operation has been canceled already.
Use faster inserts, at the cost of updating the passed features to reflect changes made at the provid...
A container for data stored inside a QgsSpatialIndexKDBush index.
A very fast static spatial index for 2D points based on a flat KD-tree.
Base class for providing feedback from a processing algorithm.
Parameter is an advanced parameter which should be hidden from users by default.
A class to represent a 2D point.
void setProgress(double progress)
Sets the current progress for the feedback object.
Container of fields for a vector layer.
void setAttributes(const QgsAttributes &attrs)
Sets the feature's attributes.
A numeric output for processing algorithms.
QList< QgsSpatialIndexKDBushData > within(const QgsPointXY &point, double radius) const
Returns the list of features which are within the given search radius of point.
The feature class encapsulates a single feature including its id, geometry and a list of field/values...
A feature sink output for processing algorithms.
const QgsAbstractGeometry * constGet() const
Returns a non-modifiable (const) reference to the underlying abstract geometry primitive.
static QgsFields combineFields(const QgsFields &fieldsA, const QgsFields &fieldsB)
Combines two field lists, avoiding duplicate field names (in a case-insensitive manner).
A double numeric parameter for distance values.
This class wraps a request for features to a vector layer (or directly its vector data provider)...
Custom exception class for processing related exceptions.
bool append(const QgsField &field, FieldOrigin origin=OriginProvider, int originIndex=-1)
Appends a field. The field must have unique name, otherwise it is rejected (returns false) ...
Encapsulate a field in an attribute table or data source.
A numeric parameter for processing algorithms.
QgsPointXY point() const
Returns the indexed point.
QgsFeatureId id
Feature ID.
An input feature source (such as vector layers) parameter for processing algorithms.
qgssize size() const
Returns the size of the index, i.e.
bool hasGeometry() const
Returns true if the feature has an associated geometry.
static QString displayString(Type type)
Returns a display string type for a WKB type, e.g., the geometry name used in WKT geometry representa...
bool nextFeature(QgsFeature &f)
static Type flatType(Type type)
Returns the flat type for a WKB type.
Contains information about the context in which a processing algorithm is executed.
QgsWkbTypes::Type wkbType() const
Returns type of the geometry as a WKB type (point / linestring / polygon etc.)
virtual void reportError(const QString &error, bool fatalError=false)
Reports that the algorithm encountered an error while executing.
virtual void pushInfo(const QString &info)
Pushes a general informational message from the algorithm.