20 #include <unordered_set> 
   24 QString QgsDbscanClusteringAlgorithm::name()
 const 
   26   return QStringLiteral( 
"dbscanclustering" );
 
   29 QString QgsDbscanClusteringAlgorithm::displayName()
 const 
   31   return QObject::tr( 
"DBSCAN clustering" );
 
   34 QString QgsDbscanClusteringAlgorithm::shortDescription()
 const 
   36   return QObject::tr( 
"Clusters point features using a density based scan algorithm." );
 
   39 QStringList QgsDbscanClusteringAlgorithm::tags()
 const 
   41   return QObject::tr( 
"clustering,clusters,density,based,points" ).split( 
',' );
 
   44 QString QgsDbscanClusteringAlgorithm::group()
 const 
   46   return QObject::tr( 
"Vector analysis" );
 
   49 QString QgsDbscanClusteringAlgorithm::groupId()
 const 
   51   return QStringLiteral( 
"vectoranalysis" );
 
   54 void QgsDbscanClusteringAlgorithm::initAlgorithm( 
const QVariantMap & )
 
   61                 QObject::tr( 
"Maximum distance between clustered points" ), 1, QStringLiteral( 
"INPUT" ), 
false, 0 ) );
 
   63   auto dbscanStarParam = std::make_unique<QgsProcessingParameterBoolean>( QStringLiteral( 
"DBSCAN*" ),
 
   64                          QObject::tr( 
"Treat border points as noise (DBSCAN*)" ), 
false, 
true );
 
   66   addParameter( dbscanStarParam.release() );
 
   68   auto fieldNameParam = std::make_unique<QgsProcessingParameterString>( QStringLiteral( 
"FIELD_NAME" ),
 
   69                         QObject::tr( 
"Cluster field name" ), QStringLiteral( 
"CLUSTER_ID" ) );
 
   71   addParameter( fieldNameParam.release() );
 
   72   auto sizeFieldNameParam = std::make_unique<QgsProcessingParameterString>( QStringLiteral( 
"SIZE_FIELD_NAME" ),
 
   73                             QObject::tr( 
"Cluster size field name" ), QStringLiteral( 
"CLUSTER_SIZE" ) );
 
   75   addParameter( sizeFieldNameParam.release() );
 
   82 QString QgsDbscanClusteringAlgorithm::shortHelpString()
 const 
   84   return QObject::tr( 
"Clusters point features based on a 2D implementation of Density-based spatial clustering of applications with noise (DBSCAN) algorithm.\n\n" 
   85                       "The algorithm requires two parameters, a minimum cluster size (“minPts”), and the maximum distance allowed between clustered points (“eps”)." );
 
   88 QgsDbscanClusteringAlgorithm *QgsDbscanClusteringAlgorithm::createInstance()
 const 
   90   return new QgsDbscanClusteringAlgorithm();
 
   93 struct KDBushDataEqualById
 
  101 struct KDBushDataHashById
 
  105     return std::hash< QgsFeatureId > {}( a.
id );
 
  111   std::unique_ptr< QgsProcessingFeatureSource > source( parameterAsSource( parameters, QStringLiteral( 
"INPUT" ), context ) );
 
  115   const std::size_t minSize = 
static_cast< std::size_t
>( parameterAsInt( parameters, QStringLiteral( 
"MIN_SIZE" ), context ) );
 
  116   const double eps = parameterAsDouble( parameters, QStringLiteral( 
"EPS" ), context );
 
  117   const bool borderPointsAreNoise = parameterAsBoolean( parameters, QStringLiteral( 
"DBSCAN*" ), context );
 
  119   QgsFields outputFields = source->fields();
 
  121   const QString clusterFieldName = parameterAsString( parameters, QStringLiteral( 
"FIELD_NAME" ), context );
 
  123   const QString clusterSizeFieldName = parameterAsString( parameters, QStringLiteral( 
"SIZE_FIELD_NAME" ), context );
 
  124   newFields.
append( 
QgsField( clusterSizeFieldName, QVariant::Int ) );
 
  128   std::unique_ptr< QgsFeatureSink > sink( parameterAsSink( parameters, QStringLiteral( 
"OUTPUT" ), context, dest, outputFields, source->wkbType(), source->sourceCrs() ) );
 
  133   feedback->
pushInfo( QObject::tr( 
"Building spatial index" ) );
 
  136     return QVariantMap();
 
  139   feedback->
pushInfo( QObject::tr( 
"Analysing clusters" ) );
 
  140   std::unordered_map< QgsFeatureId, int> idToCluster;
 
  141   idToCluster.reserve( index.size() );
 
  143   const long featureCount = source->featureCount();
 
  144   dbscan( minSize, eps, borderPointsAreNoise, featureCount, features, index, idToCluster, feedback );
 
  147   std::unordered_map< int, int> clusterSize;
 
  148   std::for_each( idToCluster.begin(), idToCluster.end(), [ &clusterSize ]( std::pair< QgsFeatureId, int > idCluster ) { clusterSize[ idCluster.second ]++; } );
 
  151   const double writeStep = featureCount > 0 ? 10.0 / featureCount : 1;
 
  152   features = source->getFeatures();
 
  165     auto cluster = idToCluster.find( feat.
id() );
 
  166     if ( cluster != idToCluster.end() )
 
  168       attr << cluster->second  << clusterSize[ cluster->second ];
 
  172       attr << QVariant() << QVariant();
 
  179   outputs.insert( QStringLiteral( 
"OUTPUT" ), dest );
 
  180   outputs.insert( QStringLiteral( 
"NUM_CLUSTERS" ), 
static_cast< unsigned int >( clusterSize.size() ) );
 
  185 void QgsDbscanClusteringAlgorithm::dbscan( 
const std::size_t minSize,
 
  187     const bool borderPointsAreNoise,
 
  188     const long featureCount,
 
  191     std::unordered_map< QgsFeatureId, int> &idToCluster,
 
  194   const double step = featureCount > 0 ? 90.0 / featureCount : 1;
 
  196   std::unordered_set< QgsFeatureId > visited;
 
  197   visited.reserve( index.
size() );
 
  201   int clusterCount = 0;
 
  216     if ( visited.find( feat.
id() ) != visited.end() )
 
  233     std::unordered_set< QgsSpatialIndexKDBushData, KDBushDataHashById, KDBushDataEqualById> within;
 
  239         within.insert( data );
 
  241       if ( within.size() < minSize )
 
  244       visited.insert( feat.
id() );
 
  254     idToCluster[ feat.
id() ] = clusterCount;
 
  257     while ( !within.empty() )
 
  265       within.erase( within.begin() );
 
  267       if ( visited.find( j.
id ) != visited.end() )
 
  273       visited.insert( j.
id );
 
  279       std::unordered_set< QgsSpatialIndexKDBushData, KDBushDataHashById, KDBushDataEqualById > within2;
 
  282         within2.insert( data );
 
  284       if ( within2.size() >= minSize )
 
  287         std::copy_if( within2.begin(),
 
  289                       std::inserter( within, within.end() ),
 
  292           return visited.find( needle.id ) == visited.end();
 
  295       if ( !borderPointsAreNoise || within2.size() >= minSize )
 
  297         idToCluster[ j.
id ] = clusterCount;
 
Wrapper for iterator of features from vector data provider or vector layer.
bool nextFeature(QgsFeature &f)
This class wraps a request for features to a vector layer (or directly its vector data provider).
@ FastInsert
Use faster inserts, at the cost of updating the passed features to reflect changes made at the provid...
The feature class encapsulates a single feature including its unique ID, geometry and a list of field...
void setAttributes(const QgsAttributes &attrs)
Sets the feature's attributes.
bool hasGeometry() const
Returns true if the feature has an associated geometry.
bool isCanceled() const SIP_HOLDGIL
Tells whether the operation has been canceled already.
void setProgress(double progress)
Sets the current progress for the feedback object.
Encapsulate a field in an attribute table or data source.
Container of fields for a vector layer.
bool append(const QgsField &field, FieldOrigin origin=OriginProvider, int originIndex=-1)
Appends a field. The field must have unique name, otherwise it is rejected (returns false)
const QgsAbstractGeometry * constGet() const SIP_HOLDGIL
Returns a non-modifiable (const) reference to the underlying abstract geometry primitive.
QgsWkbTypes::Type wkbType() const SIP_HOLDGIL
Returns type of the geometry as a WKB type (point / linestring / polygon etc.)
A class to represent a 2D point.
Contains information about the context in which a processing algorithm is executed.
Custom exception class for processing related exceptions.
Base class for providing feedback from a processing algorithm.
virtual void pushInfo(const QString &info)
Pushes a general informational message from the algorithm.
virtual void reportError(const QString &error, bool fatalError=false)
Reports that the algorithm encountered an error while executing.
A numeric output for processing algorithms.
@ FlagAdvanced
Parameter is an advanced parameter which should be hidden from users by default.
A double numeric parameter for distance values.
A feature sink output for processing algorithms.
An input feature source (such as vector layers) parameter for processing algorithms.
A numeric parameter for processing algorithms.
static QgsFields combineFields(const QgsFields &fieldsA, const QgsFields &fieldsB, const QString &fieldsBPrefix=QString())
Combines two field lists, avoiding duplicate field names (in a case-insensitive manner).
@ TypeVectorPoint
Vector point layers.
A container for data stored inside a QgsSpatialIndexKDBush index.
QgsFeatureId id
Feature ID.
QgsPointXY point() const
Returns the indexed point.
A very fast static spatial index for 2D points based on a flat KD-tree.
qgssize size() const
Returns the size of the index, i.e.
QList< QgsSpatialIndexKDBushData > within(const QgsPointXY &point, double radius) const
Returns the list of features which are within the given search radius of point.
static QString displayString(Type type) SIP_HOLDGIL
Returns a non-translated display string type for a WKB type, e.g., the geometry name used in WKT geom...
static Type flatType(Type type) SIP_HOLDGIL
Returns the flat type for a WKB type.