QGIS API Documentation  3.12.1-București (121cc00ff0)
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Modules Pages
qgsalgorithmrandomextract.cpp
Go to the documentation of this file.
1 /***************************************************************************
2  qgsalgorithmrandomextract.cpp
3  ---------------------
4  begin : December 2019
5  copyright : (C) 2019 by Alexander Bruy
6  email : alexander dot bruy at gmail dot com
7  ***************************************************************************/
8 
9 /***************************************************************************
10  * *
11  * This program is free software; you can redistribute it and/or modify *
12  * it under the terms of the GNU General Public License as published by *
13  * the Free Software Foundation; either version 2 of the License, or *
14  * (at your option) any later version. *
15  * *
16  ***************************************************************************/
17 
19 #include <random>
20 #include <functional>
21 
23 
24 QString QgsRandomExtractAlgorithm::name() const
25 {
26  return QStringLiteral( "randomextract" );
27 }
28 
29 QString QgsRandomExtractAlgorithm::displayName() const
30 {
31  return QObject::tr( "Random extract" );
32 }
33 
34 QStringList QgsRandomExtractAlgorithm::tags() const
35 {
36  return QObject::tr( "extract,filter,random,number,percentage" ).split( ',' );
37 }
38 
39 QString QgsRandomExtractAlgorithm::group() const
40 {
41  return QObject::tr( "Vector selection" );
42 }
43 
44 QString QgsRandomExtractAlgorithm::groupId() const
45 {
46  return QStringLiteral( "vectorselection" );
47 }
48 
49 QString QgsRandomExtractAlgorithm::shortHelpString() const
50 {
51  return QObject::tr( "This algorithm takes a vector layer and generates a new one that contains only a subset "
52  "of the features in the input layer.\n\n"
53  "The subset is defined randomly, using a percentage or count value to define the total number "
54  "of features in the subset." );
55 }
56 
57 QgsRandomExtractAlgorithm *QgsRandomExtractAlgorithm::createInstance() const
58 {
59  return new QgsRandomExtractAlgorithm();
60 }
61 
62 void QgsRandomExtractAlgorithm::initAlgorithm( const QVariantMap & )
63 {
64  addParameter( new QgsProcessingParameterFeatureSource( QStringLiteral( "INPUT" ), QObject::tr( "Input layer" ),
65  QList< int >() << QgsProcessing::TypeVector ) );
66  addParameter( new QgsProcessingParameterEnum( QStringLiteral( "METHOD" ), QObject::tr( "Method" ), QStringList() << QObject::tr( "Number of features" ) << QObject::tr( "Percentage of features" ), false, 0 ) );
67  addParameter( new QgsProcessingParameterNumber( QStringLiteral( "NUMBER" ), QObject::tr( "Number/percentage of features" ),
68  QgsProcessingParameterNumber::Integer, 10, false, 0 ) );
69 
70  addParameter( new QgsProcessingParameterFeatureSink( QStringLiteral( "OUTPUT" ), QObject::tr( "Extracted (random)" ) ) );
71 }
72 
73 QVariantMap QgsRandomExtractAlgorithm::processAlgorithm( const QVariantMap &parameters, QgsProcessingContext &context, QgsProcessingFeedback *feedback )
74 {
75  std::unique_ptr< QgsProcessingFeatureSource > source( parameterAsSource( parameters, QStringLiteral( "INPUT" ), context ) );
76  if ( !source )
77  throw QgsProcessingException( invalidSourceError( parameters, QStringLiteral( "INPUT" ) ) );
78 
79  QString dest;
80  std::unique_ptr< QgsFeatureSink > sink( parameterAsSink( parameters, QStringLiteral( "OUTPUT" ), context, dest, source->fields(),
81  source->wkbType(), source->sourceCrs(), QgsFeatureSink::RegeneratePrimaryKey ) );
82  if ( !sink )
83  throw QgsProcessingException( invalidSinkError( parameters, QStringLiteral( "OUTPUT" ) ) );
84 
85  int method = parameterAsEnum( parameters, QStringLiteral( "METHOD" ), context );
86  int number = parameterAsInt( parameters, QStringLiteral( "NUMBER" ), context );
87 
88  long count = source->featureCount();
89 
90  if ( method == 0 )
91  {
92  // number of features
93  if ( number > count )
94  throw QgsProcessingException( QObject::tr( "Selected number is greater than feature count. Choose a lower value and try again." ) );
95  }
96  else
97  {
98  // percentage of features
99  if ( number > 100 )
100  throw QgsProcessingException( QObject::tr( "Percentage can't be greater than 100. Choose a lower value and try again." ) );
101 
102  number = static_cast< int >( std::ceil( number * count / 100 ) );
103  }
104 
105  // initialize random engine
106  std::random_device randomDevice;
107  std::mt19937 mersenneTwister( randomDevice() );
108  std::uniform_int_distribution<int> fidsDistribution( 0, count );
109 
110  QVector< QgsFeatureId > fids( number );
111  std::generate( fids.begin(), fids.end(), bind( fidsDistribution, mersenneTwister ) );
112 
113  QHash< QgsFeatureId, int > idsCount;
114  for ( QgsFeatureId id : fids )
115  {
116  if ( feedback->isCanceled() )
117  {
118  break;
119  }
120 
121  idsCount[ id ] += 1;
122  }
123 
124  QgsFeatureIds ids = QSet< QgsFeatureId >::fromList( idsCount.keys() );
125  QgsFeatureIterator fit = source->getFeatures( QgsFeatureRequest().setFilterFids( ids ), QgsProcessingFeatureSource::FlagSkipGeometryValidityChecks );
126 
127  QgsFeature f;
128  while ( fit.nextFeature( f ) )
129  {
130  if ( feedback->isCanceled() )
131  {
132  break;
133  }
134 
135  const int count = idsCount.value( f.id() );
136  for ( int i = 0; i < count; ++i )
137  {
138  sink->addFeature( f, QgsFeatureSink::FastInsert );
139  }
140  }
141 
142  QVariantMap outputs;
143  outputs.insert( QStringLiteral( "OUTPUT" ), dest );
144  return outputs;
145 }
146 
QgsFeatureId id
Definition: qgsfeature.h:64
Wrapper for iterator of features from vector data provider or vector layer.
Use faster inserts, at the cost of updating the passed features to reflect changes made at the provid...
QSet< QgsFeatureId > QgsFeatureIds
Definition: qgsfeatureid.h:34
Base class for providing feedback from a processing algorithm.
Invalid geometry checks should always be skipped. This flag can be useful for algorithms which always...
qint64 QgsFeatureId
Definition: qgsfeatureid.h:25
The feature class encapsulates a single feature including its id, geometry and a list of field/values...
Definition: qgsfeature.h:55
A feature sink output for processing algorithms.
This flag indicates, that a primary key field cannot be guaranteed to be unique and the sink should i...
An enum based parameter for processing algorithms, allowing for selection from predefined values...
This class wraps a request for features to a vector layer (or directly its vector data provider)...
Custom exception class for processing related exceptions.
Definition: qgsexception.h:82
A numeric parameter for processing algorithms.
bool isCanceled() const
Tells whether the operation has been canceled already.
Definition: qgsfeedback.h:55
An input feature source (such as vector layers) parameter for processing algorithms.
Tables (i.e. vector layers with or without geometry). When used for a sink this indicates the sink ha...
Definition: qgsprocessing.h:53
Contains information about the context in which a processing algorithm is executed.